576 resultados para 4 methoxy n methylphenethylamine
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.
Resumo:
The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
The signatures of the coexistence of para and ferromagnetic phases for the Fe3+ charge state of iron have been identified in the low temperature electron spin resonance (ESR) spectra in undoped CdZnTe (Zn similar to 4%) crystals and independently verified by superconducting quantum interference device (SQUID) and AC susceptibility measurements. In the paramagnetic phase the inverse of AC susceptibility follows the Curie-Weiss law. In the ferromagnetic phase the thermal evolution of magnetization follows the well-known Bloch T-3/2 law. This is further supported by the appearance of hysteresis in the SQUID measurements at 2 K below T-c which is expected to lie in between 2 and 2.5 K. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.
Resumo:
In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.
Resumo:
A conformationally locked fluoropentol undergoes an interesting transformation to (trans,anti,trans,anti,trans)-perhydro-2,3,4a,6,7,8a-naphthalenehexol essentially under conditions of base-induced transesterification. The proposed rationale for the observed metamorphosis involves a nucleophilic displacement of fluoride, and subsequent stereo- and regioselective anti-Furst-Plattner-type ring-opening of the epoxide thus formed.
Resumo:
The reaction of imidazole (Him) with [Cu2(µ-O2CMe)4(H2O)2] in water–NaClO4 led to the formation of a polynuclear copper(II) complex, [Cu5(OH)2(H2O)(O2CMe)6(Him)4][ClO4]21, in which the pentanuclear units, showing four, five and six co-ordination geometries for the copper(II) centres and Cu Cu distances of 3.043(1), 3.178(1) and 3.578(1)Å, were linked by aqua bridges to give an intra-chain inter-unit Cu Cu separation of 4.507(1)Å.
Resumo:
Five new complexes of lanthanide perchlorates with a new ligand O,O' diisopropyl N(-4-antipyryl) phosphoramidate (DIAP) of the general formula Ln(DIAP)4(ClO4)3 where Ln = La, Pr, Nd, Sm and Gd, have been synthesised and characterized by chemical analysis, IR(200–4000cm−1) and electronic spectra and electrical conductance data. Infrared spectral data indicate the coordination of the ligand to the metal ions in a bidentate fashion, through the C=O oxygen of the antipyrine group and the P=O group. IR and conductance values show that the three perchlorate groups are ionic. Electronic spectrum of the Nd3+ complex in the visible region, indicates reasonable covalency in the metal-ligand bond. The available data point to an eight coordinate geometry around the metal ions, with each ligand behaving in a bidentate ‘00’ fashion.
Resumo:
4-Nitro 2-picoline-l-oxide (NPicO) complexes of the formulae La (NPicO)5 (CIO4)3, Ln2 (NPicO)9 (C1O4)6 (Ln = Pr, Nd, and Gd) and Ln (NPicO)4 (CIO4)3 (Ln == Tb, Dy, Ho and Yb) have been synthesised and characterised by analysis, electrolytic conductance, infrared, proton NMR and electronic spectral data. A tentative coordination number of 6 for all the complexes have been assigned