427 resultados para linear complexity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is presented for the synthesis of analog circuits using piecewise linear (PWL) approximations. The function to be synthesized is divided into PWL segments such that each segment can be realized using elementary MOS current-mode programmable-gain circuits. A number of these elementary current-mode circuits when connected in parallel, it is possible to realize piecewise linear approximation of any arbitrary analog function with in the allowed approximation error bounds. Simulation results show a close agreement between the desired function and the synthesized output. The number of PWL segments used for approximation and hence the circuit area is determined by the required accuracy and the smoothness of the resulting function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.