323 resultados para Silica nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a film of a suspension of polymer grafted nanoparticles on a liquid substrate can be employed to create two-dimensional nanostructures with a remarkable variation in the pattern length scales. The presented experiments also reveal the emergence of concentration-dependent bimodal patterns as well as re-entrant behaviour that involves length scales due to dewetting and compositional instabilities. The experimental observations are explained through a gradient dynamics model consisting of coupled evolution equations for the height of the suspension film and the concentration of polymer. Using a Flory-Huggins free energy functional for the polymer solution, we show in a linear stability analysis that the thin film undergoes dewetting and/or compositional instabilities depending on the concentration of the polymer in the solution. We argue that the formation via `hierarchical self-assembly' of various functional nanostructures observed in different systems can be explained as resulting from such an interplay of instabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Cr (3% and 5%) doped CdS nanoparticles were synthesized by chemical co-precipitation method. The synthesized nanocrystalline particles are characterized by energy dispersive X-ray analysis (EDAX), scanning electron microscope (SEM), X-ray Diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Electron paramagnetic resonance (EPR), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD studies indicate that Cr doping in host CdS result a structural change from Cubic phase to mixed (cubic + hexagonal) phase. Due to quantum confinement effect, widening of the band gap is observed for undoped and Cr doped CdS nanoparticles compared to bulk CdS. The average particle size calculated from band gap values is in good agreement with the TEM study calculation and it is around 4-5 nm. A strong violet emission band consisting of two emission peaks is observed for undoped CdS nanoparticles, whereas for CdS:Cr nanoparticles, a broad emission band ranging from 420 nm to 730 nm with a maximum at similar to 587 nm is observed. The broad emission band is due to the overlapped emissions from variety of defects. EPR spectra of CdS:Cr samples reveal resonance signal at g = 2.143 corresponding to interacting Cr3+ ions. VSM studies indicate that the diamagnetic CdS nanoparticles are transform to ferromagnetic for 3% Cr3+ doping and the ferromagnetic nature is diminished with increasing the doping concentration to 5%. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering blend structure with tailor-made distribution of nanoparticles is the prime requisite to obtain materials with extraordinary properties. Herein, a unique strategy of distributing nanoparticles in different phases of a blend structure has resulted in >99% blocking of incoming electromagnetic (EM) radiation. This is accomplished by designing a ternary polymer blend structure using polycarbonate (PC), poly(vinylidene fluoride) (PVDF), and poly(methyl methacrylate) (PMMA) to simultaneously improve the structural, electrical, and electromagnetic interference shielding (EMI). The blend structure was made conducting by preferentially localizing the multi-wall nanotubes (MWNTs) in the PVDF phase. By taking advantage of pp stacking MWNTs was noncovalently modified with an imidazolium based ionic liquid (IL). Interestingly, the enhanced dispersion of IL-MWNTs in PVDF improved the electrical conductivity of the blends significantly. While one key requisite to attenuate EM radiation (i.e., electrical conductivity) was achieved using MWNTs, the magnetic properties of the blend structure was tuned by introducing barium ferrite (BaFe) nanoparticles, which can interact with the incoming EM radiation. By suitably modifying the surface of BaFe nanoparticles, we can tailor their localization under the macroscopic processing condition. The precise localization of BaFe nanoparticles in the PC phase, due to nucleophilic substitution reaction, and the MWNTs in the PVDF phase not only improved the conductivity but also facilitated in absorption of the incoming microwave radiation due to synergetic effect from MWNT and BaFe. The shielding effectiveness (SE) was measured in X and K-u band, and an enhanced SE of -37 dB was noted at 18 GHz frequency. PMMA, which acted as an interfacial modifier in PC/PVDF blends further, resulting in a significant enhancement in the mechanical properties besides retaining high SE. This study opens a new avenue in designing mechanically strong microwave absorbers with a suitable combination of materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, magnetic core-shell nanoparticles have received widespread attention due to their unique properties that can be used for various applications. We introduce here a magnetic core-shell nanoparticle system for potential application as a contrast agent in magnetic resonance imaging (MRI). MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized by the wet-chemical synthesis method. Detailed structural and compositional charaterization confirmed the formation of a core-shell microstructure for the nanoparticles. Magnetic charaterization revealed the superparamagnetic nature of the as-synthesized core-shell nanoparticles. Average size and saturation magnetization values obtained for the as-synthesized core-shell nanoparticle were 12.5 nm and 69.34 emu g(-1) respectively. The transverse relaxivity value of the water protons obtained in the presence of the core-shell nanoparticles was 184.1 mM(-1) s(-1). To investigate the effect of the core-shell geometry towards enhancing the relaxivity value, transverse relaxivity values were also obtained in the presence of separately synthesized single phase Fe3O4 and MnFe2O4 nanoparticles. Average size and saturation magnetization values for the as-synthesized Fe3O4 nanoparticles were 12 nm and 65.8 emu g(-1) respectively. Average size and saturation magnetization values for the MnFe2O4 nanoparticles were 9 nm and 61.5 emu g(-1) respectively. The transverse relaxivity value obtained in the presence of single phase Fe3O4 and MnFe2O4 nanoparticles was 96.6 and 83.2 mM(-1) s(-1) respectively. All the nanoparticles (core-shell and single phase) were coated with chitosan by a surfactant exchange reaction before determining the relaxivity values. For similar nanoparticle sizes and saturation magnetization values, the highest value of the transverse relaxivity in the case of core-shell nanoparticles clearly illustrated that the difference in the magnetic nature of the core and shell phases in the core-shell nanoparticles creates greater magnetic inhomogeneity in the surrounding medium yielding a high value for proton relaxivity. The MnFe2O4-Fe3O4 core-shell nanoparticles exhibited extremely low toxicity towards the MCF-7 cell line. Taken together, this opens up new avenues for the use of core-shell nanoparticles in MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single step process for the synthesis of size-controlled silver nanoparticles has been developed using a bifunctional molecule, octadecylamine (ODA). Octadecylamine complexes to Ag+ ions electrostatically, reduce them, and subsequently stabilizes the nanoparticles thus formed. Hence, octadecylamine simultaneously functions as both a reducing and a stabilizing agent. The amine-capped nanoparticles can be obtained in the form of dry powder, which is readily redispersible in aqueous and organic solvents. The particle size, and the nucleation and growth kinetics of silver nanoparticles could be tuned by varying the molar ratio of ODA to AgNO3. The UV-vis spectra of nanoparticles prepared with different concentrations of ODA displayed the well-defined plasmon band with maximum absorption around 425 nm. The formation of silver metallic nanoparticles was confirmed by their XRD pattern. The binding of ODA molecule on the surface of silver has been studied by FT-IR and NMR spectroscopy. The formation of well-dispersed spherical Ag nanoparticles has been confirmed by TEM analysis. The particle size and distribution are found to be dependent on the molar concentration of the amine molecule. Open aperture z-scans have been performed to measure the nonlinearity of Ag nanoparticles. (C) 2015 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new electrochemical sensing device was constructed for determination of pesticides. In this report, acetylcholinesterase was bioconjugated onto hybrid nanocomposite, i.e. iron oxide nanoparticles and poly(indole-5-carboxylic acid) (Fe(3)O(4)NPs/Pin5COOH) was deposited electrochemically on glassy carbon electrode. Fe(3)O(4)NPs was showed as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The enzyme inhibition by pesticides was detected within concentrations ranges between 0.1-60 and 1.5-70 nM for malathion and chlorpyrifos, respectively, under optimal experimental conditions (sodium phosphate buffer, pH 7.0 and 25 degrees C). Biosensor determined the pesticides level in water samples (spiked) with satisfactory accuracy (96%-100%). Sensor showed good storage stability and retained 50% of its initial activity within 70 days at 4 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the hydrothermal synthesis of boron-doped CNPs (B-CNPs) with different size/atomic percentage of doping and size-independent color tunability from red to blue. The variation of size/atomic percentage of B is achieved by simply varying the reaction time, while the color tunability is obtained by diluting the solution. With dilution, the luminescence spectra are not only blue-shifted, the intensity increases as well. The huge blue-shift in the emission energy (similar to 1 eV) is believed to be due to the increase in the interparticle distance. The quantum yield with optimum dilution is found to increase with boron doping though it is very low as compared to CNPs and nitrogen-doped CNPs. Finally, we show that B-CNPs with a quantum yield of 0.5% can be used for bioimaging applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is similar to 1 mu m and that of Fe/Fe3C magnetic nanoparticles is similar to 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO powders/thin films/coatings when excited by a suitable excitation source, usually yield green luminescence in the visible wavelength range along with characteristic ultra-violet emission. We report yellow-red emission from ZnO nanoparticles synthesized within 5 min of microwave irradiation by using zinc acetylacetonate phenanthroline as the starting precursor material. The emission is strongly dependent on the typical structure of the starting precursor for ZnO synthesis, where one phenanthroline moiety is attached with zinc acetylacetonate hydrate complex. These ZnO nanoparticles could be potentially suitable phosphor for white light generation when excited by a blue laser. In contrast, the ZnO nanoparticles obtained from zinc acetylacetonate by similar method yield weak green emission. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Peclet number, Pe = 0.05, 5, and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Peclet numbers (Pe = 0.05) and by a kinetic model at high Peclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emission intensity of fluorophore molecule may change in presence of strong plasmon field induced by nanoparticles. The enhancement intensity is optimized through selective clustering or functionalization of nanoparticles in closed vicinity of fluorophore. Our study is aimed at understanding the enhancement mechanism of fluorescence intensity in presence of gold nanoparticles to utilize it in molecular sensing and in situ imaging in the microfluidic lab-on-chip device. Related phenomena are studied in situ in a microfluidic channel via fluorescence imaging. Detailed analysis is carried out to understand the possible mechanism of enhancement of fluorescence due to nanoparticles. In the present experimental study we show that SYTO9 fluorescence intensity increased in presence of Au nanoparticles of similar to 20 nm diameter. The fluorescence intensity is 20 time more compared to that in absence of Au nanoparticles. The enhancement of fluorescence intensity is attributed to the plasmonic resonance of Au nanoparticle at around the fluorescence emission wavelength. Underlying fundamental mechanism via dipole interaction model is explored for quantitative correlation of plasmonic enhancement properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.