415 resultados para Partitioned transition relations
Resumo:
We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC - susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magnetization of PCMO10 (similar to 250 kOe) is found to be reduced in comparison with that of bulk PCMO (similar to 300 kOe). With increasing temperature, the critical magnetic field required to `melt' the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3664786]
Resumo:
Freestanding crystalline PbZrO3 nanoparticles with an average size of 15 nm were synthesized by the modified sot gel method and characterized by X-ray diffraction and electron microscopy. Dielectric studies indicated that the paraelectric to antiferroelectric phase transition in the PbZrO3 nanoparticles was observed around at 205 degrees C which was at 233 degrees C for PbZrO3 bulk material. A single leaky ferroelectric loop was observed instead of an antiferroelectric double hysteresis loop which may be because of the defects such as grain boundaries and the pores in the sample because the sample was not sintered at higher temperatures to retain the nanoscale dimension of the PbZrO3 particles.
Resumo:
Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.
Resumo:
Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.
Resumo:
Raman studies on Ca4Al2O5.7Fe2As2 superconductor in the temperature range of 5K to 300 K, covering the superconducting transition temperature T-c = 28.3 K, reveal that the Raman mode at similar to 230 cm(-1) shows a sharp jump in frequency by similar to 2% and linewidth increases by similar to 175% at T-o similar to 60 K. Below T-o, anomalous softening of the mode frequency and a large decrease by similar to 10 cm(-1) in the linewidth are observed. These precursor effects at T-0 (similar to 2T(c)) are attributed to significant superconducting fluctuations, possibly enhanced due to reduced dimensionality arising from weak coupling between the well separated (similar to 15 angstrom) Fe-As layers in the unit cell. A large blue-shift of the mode frequency between 300 K and 60 K (similar to 7%) indicates strong spin-phonon coupling in this superconductor. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4724206]
Resumo:
Ropalidia marginata, a primitively eusocial wasp, is different from typical primitively eusocial species in having docile queens who cannot be using dominance to maintain reproductive monopoly and instead appear to use a pheromone from the Dufour's gland to do so. When a docile queen is removed from her colony, one of the workers (potential queen, PQ) becomes highly aggressive, and if the queen is not returned, gradually loses her aggression and becomes the new docile queen within a few days. We hypothesized that the decrease in aggression of the PQ with time since queen removal should be correlated with her change in ovaries and pheromone profile. Because the Dufour's gland hydrocarbon composition in R.marginata can be correlated with fertility, this also gave us an opportunity to test whether PQ is different from workers in her Dufour's gland hydrocarbons. In this study, we therefore trace the road to royalty in R.marginata, that is, the transition of the PQ during queen establishment, in terms of her ovaries, aggression, and Dufour's gland hydrocarbons. Our study focuses on queen establishment, which is important for understanding how reproductive conflict can be manifested and resolved.
Resumo:
Particle simulations based on the discrete element method are used to examine the effect of base roughness on the granular flow down an inclined plane. The base is composed of a random configuration of fixed particles, and the base roughness is decreased by decreasing the ratio of diameters of the base and moving particles. A discontinuous transition from a disordered to an ordered flow state is observed when the ratio of diameters of base and moving particles is decreased below a critical value. The ordered flowing state consists of hexagonally close packed layers of particles sliding over each other. The ordered state is denser (higher volume fraction) and has a lower coordination number than the disordered state, and there are discontinuous changes in both the volume fraction and the coordination number at transition. The Bagnold law, which states that the stress is proportional to the square of the strain rate, is valid in both states. However, the Bagnold coefficients in the ordered flowing state are lower, by more than two orders of magnitude, in comparison to those of the disordered state. The critical ratio of base and moving particle diameters is independent of the angle of inclination, and varies very little when the height of the flowing layer is doubled from about 35 to about 70 particle diameters. While flow in the disordered state ceases when the angle of inclination decreases below 20 degrees, there is flow in the ordered state at lower angles of inclination upto 14 degrees. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4710543]
Resumo:
We observe an unusual tunneling magnetoresistance (TMR) phenomenon in a composite of La2/3Sr1/3MnO3 with CoFe2O4 where the TMR versus applied magnetic field loop suggests a ``negative coercive field.'' Tracing its origin back to a ``dipolar-biasing'' of La2/3Sr1/3MnO3 by CoFe2O4, we show that the TMR of even a single composite can be tuned continuously so that the resistance peak or the highest sensitivity of the TMR can be positioned anywhere on the magnetic field axis with a suitable magnetic history of the sample. This phenomenon of an unprecedented tunability of the TMR should be present in general in all such composites. (C) 2012 American Institute of Physics.http://dx.doi.org/10.1063/1.4731206]
Resumo:
Using all-atom molecular dynamics simulation, we have studied the effect of size and temperature on the strain induced phase transition of wurtzite CdSe nanowires. The wurtzite structure transforms into a five-fold coordinated structure under uniaxial strain along the c axis. Our results show that lower temperature and smaller size of the nanowires stabilize the five-fold coordinated phase which is not a stable structure in bulk CdSe. High reversibility of this transformation with a very small heat loss will make these nanowires suitable for building efficient nanodevices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4734990]
Resumo:
The quaternary oxide in the system Al2O3-CaO-TiO2 is found to have the composition Ca3Ti8Al12O37 rather than CaTi3Al8O19 as reported in the literature. The standard Gibbs energy of formation of Ca3Ti8Al12O37 from component binary oxides is measured in the temperature range from 900 to 1250 K using a solid-state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The results can be represented by the equation: delta G(f(0x))(0) (+/- 70)/J mol(-1) = -248474 - 15.706(T/K). Combining this information with thermodynamic data on calcium aluminates and titanates available in the literature, subsolidus phase relations in the pseudo-ternary system Al2O3-CaO-TiO2 are computed and presented as isothermal sections. The evolution of phase relations with temperature is highlighted. Chemical potential diagrams are computed at 1200 K, showing the stability domains of the various phases in the chemical potential-composition space. In each chemical potential diagram, chemical potential of one component is plotted against the cationic fraction of the other two components. The diagrams are valid at relatively high oxygen potentials where Ti is present in its four-valent state in all the oxide phases.
Resumo:
Temperature dependent X-ray powder diffraction and dielectric studies have been carried out on tetragonal compositions of (1-x) PbTiO 3(x) BiMeO 3; Me similar to Sc and Zn 1/2 Ti 1/2. The cubic and the tetragonal phases coexist over more than 100 degrees C for 0.70 PbTiO 30.3 Bi ( Zn 1/2 Ti 1/2) O 3 and 0.66 PbTiO 30.34 BiScO 3. The wide temperature range of phase coexistence is shown to be an intrinsic feature of the system, and is attributed to the increase in the degree of the covalent character of the ( Pb +Bi ) O bond with increasing concentration of Bi at the Pb -site. The d-values of the {111} planes of the coexisting phases are nearly identical, suggesting this plane to be the invariant plane for the martensitic type cubic-tetragonal transformation occurring in these systems.
Resumo:
We revisit the assignment of Raman phonons of rare-earth titanates by performing Raman measurements on single crystals of O18 isotope-rich spin ice Dy2Ti2O718 and nonmagnetic Lu2Ti2O718 pyrochlores and compare the results with their O16 counterparts. We show that the low-wavenumber Raman modes below 250 cm-1 are not due to oxygen vibrations. A mode near 200 cm-1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder-induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the new Raman mode, observed below TC similar to 110 K in Dy2Ti2O7, through a simultaneous pressure-dependent and temperature-dependent Raman study. Our study confirms the new mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to similar to 8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Sr2SbMnO6 (SSMO) ceramics were, fabricated using the nanocrystalline powders obtained via molten salt synthesis (MSS) method. High temperature X-ray diffraction studies confirmed the structural phase transition (room temperature tetragonal (I4/mcm) to the cubic phase (Pm-3m)) temperature to be around 736K. The discontinuity in the phase transition indicated its first order nature reflecting the presence of ferroelectric-like distortions in SSMO prepared from MSS which seemed to be unique as it was not observed so far in the case of SSMO prepared using solid-state reaction method. The dielectric behavior of SSMO was studied in the 300-950 K temperature range at high frequencies (MHz range) in order to suppress the of space charge and related effects that dominate at such higher temperatures and mask the real phase transition.
Resumo:
Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor-to-metal (S-M) transition at a critical pressure. The S-M transition is attributed to lifting of the degeneracy of the bands at the Fermi level caused by interlayer interactions via charge transfer from the metal to the chalcogen. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and the GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of applications.