534 resultados para Optical Bloch Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equation has been derived for predicting the activity coefficient of oxygen or sulphur in dilute solution in binary alloys, based on the quasichemical approach, where the metal atoms and the oxygen atoms are assigned different bond numbers. This equation is an advance on Alcock and Richardson's earlier treatment where all the three types of atoms were assigned the same coordination number. However, the activity coefficients predicted by this new equation appear to be very similar to those obtained through Alcock and Richardson's equation for a number of alloy systems, when the coordination number of oxygen in the new model is the same as the average coordination number used in the earlier equation. A second equation based on the formation of “molecular species” of the type XnO and YnO in solution is also derived, where X and Y atoms attached to oxygen are assumed not to make any other bonds. This equation does not fit experimental data in all the systems considered for a fixed value of n. Howover, if the strong oxygen-metal bonds are assumed to distort the electronic configuation around the metal atoms bonded to oxygen and thus reduce the strength of the bonds formed by these atoms with neighbouring metal atoms by approximately a factor of two, the resulting equation is found to predict the activity coefficients of oxygen that are in good agreement with experimental data in a number of binary alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (1 0 0) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200 degrees C for their possible use in optoelectronic applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a method to recover the Young's modulus (E) of a tissue-mimicking phantom from measurements of ultrasound modulated optical tomography (UMOT). The object is insonified by a dualbeam, confocal ultrasound transducer (US) oscillating at frequencies f(0) and f(0) + Delta f and the variation of modulation depth (M) in the autocorrelation of light traversed through the focal region of the US transducer against Delta f is measured. From the dominant peaks observed in the above variation, the natural frequencies of the insonified region associated with the vibration along the US transducer axis are deduced. A consequence of the above resonance is that the speckle fluctuation at the resonance frequency has a higher signal-to-noise to ratio (SNR). From these natural frequencies and the associated eigenspectrum of the oscillating object, Young's modulus (E) of the material in the focal region is recovered. The working of this method is confirmed by recovering E in the case of three tissue-mimicking phantoms of different elastic modulus values. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for (silver + rhodium + oxygen) at T = 1173 K has been established by equilibration of samples representing twelve different compositions, and phase identification after quenching by optical and scanning electron microscopy (s.e.m.), X-ray diffraction (x.r.d.), and energy dispersive analysis of X-rays (e.d.x.), Only one ternary oxide, AgRhO2, was found to be stable and a three phase region involving Ag, AgRhO2 and Rh2O3 was identified. The thermodynamic properties of AgRhO2 were measured using a galvanic cell in the temperature range 980 K to 1320 K. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa was used as the reference electrode. The Gibbs free energy of formation of the ternary oxide from the elements, ΔfGo (AgRhO2), can be represented by two linear equations that join at the melting temperature of silver. In the temperature range 980 K to 1235 K, ΔfGo(AgRhO2)/(J . mol-1) = -249080 + 179.08 T/K (±120). Above the melting temperature of silver, in the temperature range 1235 K to 1320 K, ΔfGo(AgRhO2)/(J . mol-1) = -260400 + 188.24 T/K (±95). The thermodynamic properties of AgRhO2 at T = 298.15 K were evaluated from the high temperature data. The chemical potential diagram for (silver + rhodium + oxygen) at T = 1200 K was also computed on the basis of the results of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the system Cu-Eu-O have been determined by equilibrating samples of different average composition at 1200 K and by phase analysis after quenching using optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). The equilibration experiments were conducted in evacuated ampoules and under flowing inert gas and pure oxygen. The Cu-Eu alloys were found to be in equilibrium with EuO. The higher oxides of europium, Eu3O4 and Eu2O3, coexist with metallic copper. Two ternary oxides CuEu2O4 and CuEuO2 were found to be stable. The ternary oxide CuEuO2, with copper in the monovalent state, can coexist with Cu, Cu2O, Eu2O3 and CuEu2O4 in different phase fields. The compound CuEu2O4 can be in equilibrium with Cu2O, CuO, CuEuO2, Eu2O3, and O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields: Cu+Eu2O3+CuEuO2, Cu2O+CuEuO2+CuEu2O4, and Eu2O3+CuEuO2+CuEu2O4. The thermodynamic properties of the ternary oxides can be represented by the equations: $\begin{gathered} {\raise0.5ex\hbox{$Couldn't find \end for begin{gathered} Thermogravimetric analysis (TGA) studies in Ar+O2 mixtures confirmed the results from emf measurements. An oxygen potential diagram for the system Cu-Eu-O at 1200 K was evaluated from the results of this study and information available in the literature on the binary phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) resolution improvement in multi-photon multiple-excitation-spot-optical microscopy is proposed. Specially designed spatial filter is employed for improving the overall 3D resolution of the imaging system. An improvement up to a factor of 14.5 and sub-femto liter volume excitation is achieved. The system shows substantial sidelobe reduction (<4%) due to the non-linear intensity dependence of multiphoton process. Polarization effect on x-oriented and freely rotating dipoles shows dramatic change in the field distribution at the focal-plane. The resulting point-spread function has the ability to produce several strongly localized polarization dependent field patterns which may find applications in optical engineering and bioimaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared diffuse optical tomography (DOT) technique has the capability of providing good quantitative reconstruction of tissue absorption and scattering properties with additional inputs such as input and output modulation depths and correction for the photon leakage. We have calculated the two-dimensional (2D) input modulation depth from three-dimensional (3D) diffusion to model the 2D diffusion of photons. The photon leakage when light traverses from phantom to the fiber tip is estimated using a solid angle model. The experiments are carried for single (5 and 6 mm) as well as multiple inhomogeneities (6 and 8 mm) with higher absorption coefficient in a homogeneous phantom. Diffusion equation for photon transport is solved using finite element method and Jacobian is modeled for reconstructing the optical parameters. We study the development and performance of DOT system using modulated single light source and multiple detectors. The dual source methods are reported to have better reconstruction capabilities to resolve and localize single as well as multiple inhomogeneities because of its superior noise rejection capability. However, an experimental setup with dual sources is much more difficult to implement because of adjustment of two out of phase identical light probes symmetrically on either side of the detector during scanning time. Our work shows that with a relatively simpler system with a single source, the results are better in terms of resolution and localization. The experiments are carried out with 5 and 6 mm inhomogeneities separately and 6 and 8 mm inhomogeneities both together with absorption coefficient almost three times as that of the background. The results show that our experimental single source system with additional inputs such as 2D input/output modulation depth and air fiber interface correction is capable of detecting 5 and 6 mm inhomogeneities separately and can identify the size difference of multiple inhomogeneities such as 6 and 8 mm. The localization error is zero. The recovered absorption coefficient is 93% of inhomogeneity that we have embedded in experimental phantom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanocrystallites ( ≈ 3 nm) of LiNbO3, evolved in the (100−x)LiBO2-xNb2O5 (5x20, in molar ratio) glass system exhibited intense second-harmonic signals in transmission mode when exposed to infrared (IR) light at λ = 1064 nm. The second-harmonic waves were found to undergo optical diffraction which was attributed to the presence of self-organized submicrometer-sized LiNbO3 crystallites that were grown within the glass matrix along the parallel damage fringes created by the IR laser radiation. Micro-Raman studies carried out on the laser-irradiated samples confirmed the self-organized crystallites to be LiNbO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information forms the basis of modern technology. To meet the ever-increasing demand for information, means have to be devised for a more efficient and better-equipped technology to intelligibly process data. Advances in photonics have made their impact on each of the four key applications in information processing, i.e., acquisition, transmission, storage and processing of information. The inherent advantages of ultrahigh bandwidth, high speed and low-loss transmission has already established fiber-optics as the backbone of communication technology. However, the optics to electronics inter-conversion at the transmitter and receiver ends severely limits both the speed and bit rate of lightwave communication systems. As the trend towards still faster and higher capacity systems continues, it has become increasingly necessary to perform more and more signal-processing operations in the optical domain itself, i.e., with all-optical components and devices that possess a high bandwidth and can perform parallel processing functions to eliminate the electronic bottleneck.