321 resultados para Micro-simulation
Resumo:
X-ray polarimeters based on Time Projection Chamber (TPC) geometry are currently being studied and developed to make sensitive measurement of polarization in 2-10keV energy range. TPC soft X-ray polarimeters exploit the fact that emission direction of the photoelectron ejected via photoelectric effect in a gas proportional counter carries the information of the polarization of the incident X-ray photon. Operating parameters such as pressure, drift field and drift-gap affect the performance of a TPC polarimeter. Simulations presented here showcase the effect of these operating parameters on the modulation factor of the TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards Gas Electron Multiplier (GEM). The emission direction is reconstructed from the image and modulation factor is computed. Our study has shown that Ne/DME (50/50) at lower pressure and drift field can be used for a TPC polarimeter with modulation factor of 50-65%.
Resumo:
Biomechanical assays offer a good alternative to biochemical assays in diagnosing disease states and assessing the efficacy of drugs. In view of this, we have developed a miniature compliant tool to estimate the bulk stiffness of cells, particularly MCF-7 (Michigan Cancer Foundation) cells whose diameter is 12-15 mu m in suspension. The compliant tool comprises a gripper and a displacement-amplifying compliant mechanism (DaCM), where the former helps in grasping the cell and the latter enables vision-based force-sensing. A DaCM is necessary because the microscope's field of view at the required magnification is not sufficient to simultaneously observe the cell and the movement of a point on the gripper, in order to estimate the force. Therefore, a DaCMis strategically embedded within an existing gripper design leading to a composite compliant mechanism. The DaCM is designed using the kinetoelastostatic map technique to achieve a 42 nN resolution of the force. The gripper, microfabricated with SU-8 using photolithography, is within the footprint of about 10 mm by 10 mm with the smallest feature size of about 5 mu m. The experiments with MCF-7 cells suggest that the bulk stiffness of these is in the range of 8090 mN/m. The details of design, prototyping and testing comprise the paper. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Time Projection Chamber (TPC) based X-ray polarimeters using Gas Electron Multiplier (GEM) are currently being developed to make sensitive measurement of polarization in 2-10 keV energy range. The emission direction of the photoelectron ejected via photoelectric effect carries the information of the polarization of the incident X-ray photon. Performance of a gas based polarimeter is affected by the operating drift parameters such as gas pressure, drift field and drift-gap. We present simulation studies carried out in order to understand the effect of these operating parameters on the modulation factor of a TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards GEM. Our study is aimed at achieving higher modulation factors by optimizing drift parameters. Study has shown that Ne/DME (50/50) at lower pressure and drift field can lead to desired performance of a TPC polarimeter.
Resumo:
A wheeled mobile robot (WMR) will move on an uneven terrain without slip if its torus-shaped wheels tilt in a lateral direction. An independent two degree-of-freedom (DOF) suspension is required to maintain contact with uneven terrain and for lateral tilting. This article deals with the modeling and simulation of a three-wheeled mobile robot with torus-shaped wheels and four novel two-DOF suspension mechanism concepts. Simulations are performed on an uneven terrain for three representative pathsa straight line, a circular, and an S'-shaped path. Simulations show that a novel concept using double four-bar mechanism performs better than the other three concepts.
Resumo:
In conventional Raman spectroscopic measurements of liquids or surfaces the preferred geometry for detection of the Raman signal is the backscattering (or reflection) mode. For non-transparent layered materials, sub-surface Raman signals have been retrieved using spatially offset Raman spectroscopy (SORS), usually with light collection in the same plane as the point of excitation. However, as a result of multiple scattering in a turbid medium, Raman photons will be emitted in all directions. In this study, Monte Carlo simulations for a three-dimensional layered sample with finite geometry have been performed to confirm the detectability of Raman signals at all angles and at all sides of the object. We considered a non-transparent cuboid container (high density polyethylene) with explosive material (ammonium nitrate) inside. The simulation results were validated with experimental Raman intensities. Monte Carlo simulation results reveal that the ratio of sub-surface to surface signals improves at geometries other than backscattering. In addition, we demonstrate through simulations the effects of the absorption and scattering coefficients of the layers, and that of the diameter of the excitation beam. The advantage of collecting light from all possible 4 angles, over other collection modes, is that this technique is not geometry specific and molecular identification of layers underneath non-transparent surfaces can be obtained with minimal interference from the surface layer. To what extent all sides of the object will contribute to the total signal will depend on the absorption and scattering coefficients and the physical dimensions. Copyright (c) 2015 John Wiley & Sons, Ltd.
Resumo:
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1168-1179, 2015.
Resumo:
It is known in literature that a wheeled mobile robot (WMR) with fixed length axle will slip on an uneven terrain. One way to avoid wheel slip is to use a torus-shaped wheel with lateral tilt capability which allows the distance between the wheel-ground contact points to change even with a fixed length axle. Such an arrangement needs a two degree-of-freedom (DOF) suspension for the vertical and lateral tilting motion of the wheel. In this paper modeling, simulation, design and experimentation with a three-wheeled mobile robot, with torus-shaped wheels and a novel two DOF suspension allowing independent lateral tilt and vertical motion, is presented. The suspension is based on a four-bar mechanism and is called the double four-bar (D4Bar) suspension. Numerical simulations show that the three-wheeled mobile robot can traverse uneven terrain with low wheel slip. Experiments with a prototype three-wheeled mobile robot moving on a constructed uneven terrain along a straight line, a circular arc and a path representing a lane change, also illustrate the low slip capability of the three-wheeled mobile robot with the D4Bar suspension. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The role of gypsum on the strength of lime treated soils after a long period of interaction is not well understood yet. The present study is performed to scrutinize the physical and strength behavior of lime treated soil with varying gypsum content. Lime and gypsum contents varying from 0 to 6% are considered in the present study for curing periods up to 28 days. To understand the long-term effects, the work has been extended up to 365 days, particularly with the use of 6% lime content and varying gypsum contents. Atterberg's limits turned out to be marginally affected by cation exchange. Unconfined compressive strength behavior of lime treated soil varies considerably with gypsum content and curing period. However, trivial alteration in strength is observed in the soil treated with lower lime content (up to 4%) and gypsum content up to 6%. On the contrary, strength of soil-6% lime mixture with addition of varying gypsum content shows acceleration in early strength at 14 days curing period. However, the strength at 28 days of curing declines but regains afterwards for 90 days. The trend at longer curing period for 180 and 365 days is, however, not unique but varies with gypsum contents. An attempt has been made to explain these changes on the basis of the form of gypsum, formation and conversion of reacted compounds (CASHH, CASH, MI and Ettringite). The proposed explanations were supported by detailed characterization through thermal analysis, XRD, SEM and EDAX studies of soil-lime-gypsum mixtures. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The standard procedure of groundwater resource estimation in India till date is based on the specific yield parameters of each rock type (lithology) derived through pumping test analysis. Using the change in groundwater level, specific yield, and area of influence, groundwater storage change could be estimated. However, terrain conditions in the form of geomorphological variations have an important bearing on the net groundwater recharge. In this study, an attempt was made to use both lithology and geomorphology as input variables to estimate the recharge from different sources in each lithology unit influenced by the geomorphic conditions (lith-geom), season wise separately. The study provided a methodological approach for an evaluation of groundwater in a semi-arid hard rock terrain in Tirunelveli, Tamil Nadu, India. While characterizing the gneissic rock, it was found that the geomorphologic variations in the gneissic rock due to weathering and deposition behaved differently with respect to aquifer recharge. The three different geomorphic units identified in gneissic rock (pediplain shallow weathered (PPS), pediplain moderate weathered (PPM), and buried pediplain moderate (BPM)) showed a significant variation in recharge conditions among themselves. It was found from the study that Peninsular gneiss gives a net recharge value of 0.13 m/year/unit area when considered as a single unit w.r.t. lithology, whereas the same area considered with lith-geom classes gives recharge values between 0.1 and 0.41 m/year presenting a different assessment. It is also found from this study that the stage of development (SOD) for each lith-geom unit in Peninsular gneiss varies from 168 to 230 %, whereas the SOD is 223 % for the lithology as a single unit.
Resumo:
A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array. (C) 2015 AIP Publishing LLC.
Resumo:
This paper presents a lower bound limit analysis approach for solving an axisymmetric stability problem by using the Drucker-Prager (D-P) yield cone in conjunction with finite elements and nonlinear optimization. In principal stress space, the tip of the yield cone has been smoothened by applying the hyperbolic approximation. The nonlinear optimization has been performed by employing an interior point method based on the logarithmic barrier function. A new proposal has also been given to simulate the D-P yield cone with the Mohr-Coulomb hexagonal yield pyramid. For the sake of illustration, bearing capacity factors N-c, N-q and N-gamma have been computed, as a function of phi, both for smooth and rough circular foundations. The results obtained from the analysis compare quite well with the solutions reported from literature.
Resumo:
We report the temperature-dependent photoluminescence and Raman spectra of In2O3 octahedrons synthesized by an evaporation condensation process. The luminescence obtained here is due to the defect-related deep level emission, which shows highly temperature-dependent behavior in 83-573 K range. Both the position as well as the intensity varies with temperature. Similarly, Raman spectroscopy in 83-303 K range shows temperature-dependent variation in peak intensity but no change in the peak position. Interestingly, the variation of intensity for different peaks is consistent with Placzek theory which invokes the possibility of temperature sensing. We demonstrate the reversibility of peak intensity with temperature for consecutive cycles and excellent stability of the octahedrons toward cryogenic temperature sensing. Overall, both the temperature-dependent photoluminescence and Raman spectra can be explored to determine temperature in the cryogenic range at micro/nano length scales. As an example, we evaluate the temperature-dependent Raman spectra of WO3 that undergoes a phase transition around 210 K and temperature-dependent luminescence of Rhodamine 6G (Rh6G) where intensity varies with temperature.
Resumo:
We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 mu m, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s(-1) were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 mu N on a poly dimethyl siloxane (PDMS) micropillar (50 mu m in diameter, 157 mu m in height) and 415 mu N on a PDMS membrane (3 mm in diameter, 28 mu m thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 mu N on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.
Resumo:
Several mathematical models are available for estimation of effective thermal conductivity of nonreactive packed beds. Keeping in view the salient differences between metal hydride beds in which chemisorption of hydrogen takes place and conventional nonreactive packed beds, modified models are proposed here to predict the effective thermal conductivity. Variation in properties such as solid thermal conductivity and porosity during hydrogen absorption and desorption processes are incorporated. These extended models have been applied to simulate the effective thermal conductivity of the MmNi(4.5)Al(0.5) hydride bed and are compared with the experimental results. Applicability of the extended models for estimation of the effective thermal conductivity at different operating conditions such as pressure, temperature, and hydrogen concentration is discussed.
Resumo:
This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.