509 resultados para Metal sequestration
Resumo:
Four new neutral copper azido polymers, Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(8)(L-2)(2)](n) (2), Cu-4(N-3)(8)(L-3)(2)](n) (3), and Cu-9(N-3)(18)(L-4)(4)](n) (4) L1-4 are formed in situ by reacting pyridine-2-carboxaldehyde with 22-(methylamino)ethyl]pyridine (mapy, L-1), N,N-dimethylethylenediamine (N,N-dmen, L-2), N,N-diethylethylenediamine (N,N-deen, L-3), and N,N,2,2-tetramethylpropanediamine (N,N,2,2-tmpn, L-4)], have been synthesized by using 0.5 mol equiv of the chelating tridentate ligands with Cu-(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single-crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu-4(II) building blocks. The overall structure of 3 is two-dimensional, while the other three complexes are one-dimensional in nature. Complex 1 represents a unique example containing hemiaminal ether arrested by copper(R). Complexes 1 and 2 have a rare bridging azido pathway: both end-on and end-to-end bridging azides between a pair of Cu-II centers. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all four complexes. Density functional theory calculations (B3LYP functional) have been performed on complexes 1-3 to provide a qualitative theoretical interpretation of their overall ferromagnetic behavior.
Resumo:
Atomistic simulation of Ag, Al, Au, Cu, Ni, Pd, and Pt FCC metallic nanowires show a universal FCC -> HCP phase transformation below a critical cross-sectional size, which is reported for the first time in this paper. The newly observed HCP structure is also confirmed from previous experimental results. Above the critical cross-sectional size, initial < 100 >/{100} FCC metallic nanowires are found to be metastable. External thermal heating shows the transformation of metastable < 100 >/{100} FCC nanowires into < 110 >/{111} stable configuration. Size dependent metastability/instability is also correlated with initial residual stresses of the nanowire by use of molecular static simulation using the conjugant gradient method at a temperature of 0 K. It is found that a smaller cross-sectional dimension of an initial FCC nanowire shows instability due to higher initial residual stresses, and the nanowire is transformed into the novel HCP structure. The initial residual stress shows reduction with an increase in the cross-sectional size of the nanowires. A size dependent critical temperature is also reported for metastable FCC nanowires using molecular dynamic, to capture the < 110 >/{111} to < 100 >/{100} shape memory and pseudoelasticity.
Resumo:
The forestry sector provides a number of climate change mitigation options. Apart from this ecological benefit, it has significant social and economic relevance. Implementation of forestry options requires large investments and sustained long-term planning. Thus there is a need for a detailed analysis of forestry options to understand their implications on stock and flow of carbon, required investments, value of forest wealth, contribution to GNP and livelihood, demand management, employment and foreign trade. There is a need to evaluate the additional spending on forestry by analysing the environmental (particularly carbon abatement), social and economic benefits. The biomass needs for India are expected to increase by two to three times by 2020. Depending upon the forest types, ownership patterns and land use patterns, feasible forestry options are identified. It is found among many supply options to be feasible to meet the 'demand based needs' with a mix of management options, species choices and organisational set up. A comparative static framework is used to analyze the macro-economic impacts. Forestry accounts for 1.84% of GNP in India. It is characterized by significant forward industrial linkages and least backward linkage. Forestry generates about 36 million person years of employment annually. India imports Rs. 15 billion worth of forest based materials annually. Implementation of the demand based forestry options can lead to a number of ecological, economic and institutional changes. The notable ones are: enhancement of C stock from 9578 to 17 094 Mt and a net annual C-sequestration from 73 to 149 Mt after accounting for all emissions; a trebling of the output of forestry sector from Rs. 49 billion to Rs. 146 billion annually; an increase in GDP contribution of forestry from Rs. 32 billion to Rs. 105 billion over a period of 35 years; an increase in annual employment level by 23 million person years, emergence of forestry as a net contributor of foreign exchange through trading of forestry products; and an increase in economic value of forest capital stock by Rs. 7260 billion with a cost benefit analysis showing forestry as a profitable option. Implementation of forestry options calls for an understanding of current forest policies and barriers which are analyzed and a number of policy options are suggested. (C) 1997 Elsevier Science B.V.
Resumo:
We examine the magnetic and structural properties of the lanthanum manganite-based double-exchange magnets exhibiting colossal magnetoresistance. A model Hamiltonian containing the double-exchange, superexchange, and the Hubbard terms, with parameters obtained from density–functional calculations (Ref. 1), is studied within a mean-field approximation both at temperature T=0 and T>0 and with the effects of the magnetic field included. The phase diagrams we obtain with magnetic and charge-ordered phases enable us to examine the competition between the double- and superexchange terms as functions of doping and temperature. Our theoretical study provides a qualitative understanding of the phase diagram observed in the experiments. © 1997 American Institute of Physics.
Resumo:
Vapor-phase pyrolysis of Fe(CO)(5) in the presence of another carbon source such as CO or Ca He yields iron-filled or hollow nanotubes depending on the relative concentration of the carbon source. Essentially single-walled nanotubes are obtained when the C6H6/Fe(CO)(5) ratio is high. Pyrolysis of metallocenes yields metal-filled nanotubes and hollow nanotubes are obtained when metallocenes are pyrolyzed along with benzene. Metal-decorated nanotubes are also obtained by this method.
Resumo:
Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.
Resumo:
The electronic structures of pyrite-type transition-metal chalcogenides MS2-xSex (M = Fe, Co, Ni) has been investigated by photoemission and inverse-photoemission spectroscopy. The valence-band spectrum of ferromagnetic CoS2 does not show exchange splitting of the Co 3d peak, in disagreement with band-structure calculations. High-resolution photoemission spectra of NiS1.55Se0.45 shows spectral weight transfer from low (similar or equal to 50 meV) to high (0.2-0.5 eV) binding energies, in going from the metallic to the insulating phase.
Resumo:
The influence of different concentrations of base metal ions, such as CU2+, Zn2+ and Fe3+, when present either alone or in different possible binary and ternary combinations in a 9K medium, on the fel rous ion oxidation ability of Thiobacillus ferrooxidans was studied. Levels and degree of toxicity of these ions have been quantified in terms of toxicity index (TI). Copper and zinc tolerant strains of the bacteria were developed through serial subculturing and their activity tested in the presence of the above metal ions in comparison with the behavior of wild unadapted cells under similar conditions. Copper tolerant strains (25 g/L Cu2+) were found to be more efficient in the bioleaching of both copper and zinc concentrates than wild unadapted strains, while zinc tolerant strains (40 g/L Zn2+) exhibited better leaching efficiency only in the bioleaching of sphalerite concentrates. The significance and relevance of multi-metal ion tolerance in Thiobacillus ferrooxidans has been highlighted with respect to bioleaching of sulphide mineral concentrates. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
Nebulized spray pyrolysis of metal-organic precursors in methanol solution has been employed to prepare powders of TiO2, ZrO2 and PbZr0.5Ti0.5O3 (PZT). This process ensures complete decomposition of the precursors at relatively low temperatures. The particles have been examined by scanning and transmission electron microscopy as well as X-ray diffraction. As prepared, the particles are hollow agglomerates of diameter 0.1-1.6 mu m, but after heating to higher temperatures the ultimate size of the particles comprising the agglomerates are considerably smaller (0.1 mu m or less in diameter) and crystalline.
Resumo:
Chalcopyrite in contact with water is thermodynamically unstable in the presence of oxygen. Oxidation of chalcopyrite may take place due to various factors, e.g., geological environment, mining/comminution, and storage. In this work oxidation of chalcopyrite has been investigated through interfacial electrokinetics. The characteristics of samples obtained from different geological locations as well as the effects of ageing and laboratory oxidation have been delineated. Variation of the solid-liquid ratio was found to have a significant effect on the zeta-potential characteristics of chalcopyrite. The role of constituent metal ions, namely copper and iron, has been studied in the absence and presence of externally added metal ions. The results indicated that the ratio of Cu/Fe on the surface of oxidized chalcopyrite determines the Stern layer potential and under appropriate solution chemistry conditions influences charge reversals. The mineral surfaces, thus, could be either copper-rich or iron-rich as reflected by a shift in pH(iep),,(s). The observed charge reversals have been explained on the basis of a model proposed by James and Healy. (C) 1997 Academic Press.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study, 6061 Al metallic matrix was reinforced by 12.2 wt% df SiC particulates using liquid metallurgy route. The composite material thus obtained was extruded and characterized in the as-solutionized and peak aged conditions in order to delineate the effect of aging associated precipitation of secondary phases on the tensile fracture behavior of the composite samples. The results' of microstructural characterization studies carried out using scanning electron microscope revealed the increased presence of precipitated secondary phases in the metallic matrix and a more pronounced interfacial segregation of alloying elements in case of peak aged samples when compared to the as-solutionized samples. The results of the fractographic studies conducted on the as-solutionized samples revealed that the failure was dominated by the SiC particulates cracking while for the peak aged samples the fracture surface revealed a comparatively more pronounced SiC/6061 Al debonding and reduced SiC particulates cracking. This change in the failure behavior was rationalized in terms of embrittlement of the interfacial region brought about by the aging heat treatment and is correlated, in addition, with the mechanical properties of the composite samples in as-solutionized and peak aged conditions.
Resumo:
We have studied the metal-insulator transition at integer fillings in a triply degenerate Hubbard model using the Lanczos method. The critical Coulomb interaction strength U-c, is found to depend strongly on the band filling, with U-c similar to root 3 W (W is the bandwidth) at half filling for this case with threefold degeneracy. We discuss the implications of our results on metal-insulator transitions in strongly correlated systems in general, and on the unusual electronic ground state of the alkali-metal-doped fullerenes, in particular. [S0163-1829(99)11003-8].