325 resultados para Liquid propellant rockets
Resumo:
Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Atomization is the process of disintegration of a liquid jet into ligaments and subsequently into smaller droplets. A liquid jet injected from a circular orifice into cross flow of air undergoes atomization primarily due to the interaction of the two phases rather than an intrinsic break up. Direct numerical simulation of this process resolving the finest droplets is computationally very expensive and impractical. In the present study, we resort to multiscale modelling to reduce the computational cost. The primary break up of the liquid jet is simulated using Gerris, an open source code, which employs Volume-of-Fluid (VOF) algorithm. The smallest droplets formed during primary atomization are modeled as Lagrangian particles. This one-way coupling approach is validated with the help of the simple test case of tracking a particle in a Taylor-Green vortex. The temporal evolution of the liquid jet forming the spray is captured and the flattening of the cylindrical liquid column prior to breakup is observed. The size distribution of the resultant droplets is presented at different distances downstream from the location of injection and their spatial evolution is analyzed.
Resumo:
A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.
Resumo:
When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near the wall and an interface similar to that between the liquid and its vapor is formed. This analogy suggests that the composition of the binary liquid near this interface should exhibit spatial modulation similar to that near a liquid-vapor interface even if the interactions of the wall with the two components of the liquid are the same. The Guggenheim adsorption relation quantifies the concentrations of two components of a binary mixture near a liquid-vapor interface and qualitatively states that the majority (minority) component enriches the interface for negative (positive) mixing energy if the surface tensions of the two components are not very different. From molecular dynamics simulations of binary mixtures with different compositions and interactions we find that the Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative mixing energy at all state points considered. For systems with positive mixing energy, this relation is found to be qualitatively valid at low densities, while it is violated at state points with high density where correlations in the liquid are strong. This observation is validated by a calculation of the density profiles of the two components of the mixture using density functional theory with the Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim relation are discussed.
Resumo:
Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.
Resumo:
NMR spectroscopy is a powerful means of studying liquid-crystalline systems at atomic resolutions. Of the many parameters that can provide information on the dynamics and order of the systems, H-1-C-13 dipolar couplings are an important means of obtaining such information. Depending on the details of the molecular structure and the magnitude of the order parameters, the dipolar couplings can vary over a wide range of values. Thus the method employed to estimate the dipolar couplings should be capable of estimating both large and small dipolar couplings at the same time. For this purpose, we consider here a two-dimensional NMR experiment that works similar to the insensitive nuclei enhanced by polarization transfer (INEPT) experiment in solution. With the incorporation of a modification proposed earlier for experiments with low radio frequency power, the scheme is observed to enable a wide range of dipolar couplings to be estimated at the same time. We utilized this approach to obtain dipolar couplings in a liquid crystal with phenyl rings attached to either end of the molecule, and estimated its local order parameters.
Resumo:
Lipase and surfactant together form a potent pair in various biotransformation, industrial application and biotechnological studies. The present investigation deals with changes in the activity, stability and structure of lipase from Rhizopus oryzae NRRL 3562 in presence of long chain ionic liquid-type imidazolium surfactant. Both the activity and stability were found to be enhanced in presence of the surfactant at low concentration (1-125 mu M) followed by inhibition at high concentration. The activity increased by 80% and thermal deactivation temperature raised by 2.5 degrees C. Investigations by ultraviolet-visible spectroscopy and circular dichroism revealed structural changes leading to rise in beta-sheet content and lowering of a-helix at low surfactant concentrations. Deactivation at high concentration correlated with greater structural changes depicted by spectroscopic studies. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature involving non-covalent interactions. High negative value of entropy signifies exposure of hydrophobic domains and increase in structural rigidity, which correlates with active site being more accessible and rigid in presence of the surfactant. Application of these surfactants hold greater potential in the field of lipase based biotransformations, enzyme structural modifications and studies. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The present paper analyzes the effects of plumes for heat transfer enhancement at solid-liquid interface taking both smooth and grooved surfaces. The experimental setup consists of a tank of dimensions 265 x 265 x 300 (height) containing water. The bottom surface was heated and free surface of the water was left open to the ambient. In the experiments, the bottom plate had either a smooth surface or a grooved surface. We used 90 V-grooved rough surfaces with two groove heights, 10mm and 3mm. The experiment was done with water layer depths of 90mm and 140mm, corresponding to values of aspect ratio(AR) equal to 2.9 and 1.8 respectively. Thymol blue, a pH sensitive dye, was used to visualize the flow near the heated plate. The measured heat transfer coefficients over the grooved surfaces were higher compared that over the smooth surface. The enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area, rather it must be the local dynamics of the thermal boundary layer that changes the heat transport over the rough surface.
Resumo:
We discuss here the crucial role of the particle network and its stability on the long-range ion transport in solid liquid composite electrolytes. The solid liquid composite electrolytes chosen for the study here comprise nanometer sized silica (SiO2) particles having various surface chemical functionalities dispersed in nonaqueous lithium salt solutions, viz, lithium perchlorate (LiClO4) in two different polyethylene glycol based solvents. These systems constitute representative examples of an independent class of soft matter electrolytes known as ``soggy sand'' electrolytes, which have tremendous potential in diverse electrochemical devices. The oxide additive acts as a heterogeneous dopant creating free charge carriers and enhancing the local ion transport. For long-range transport, however, a stable spanning particle network is needed. Systematic experimental investigations here reveal that the spatial and time dependent characteristics of the particle network in the liquid solution are nontrivial. The network characteristics are predominantly determined by the chemical makeup of the electrolyte components and the chemical interactions between them. It is noteworthy that in this study the steady state macroscopic ionic conductivity and viscosity of the solid liquid composite electrolyte are observed to be greatly determined by the additive oxide surface chemical functionality, solvent chemical composition, and solvent dielectric constant.
Resumo:
Pressure-swirl nozzles (simplex nozzles) are used in various field applications such as aero-engines, power generation, spray painting and agricultural irrigation. For this particular nozzle, research in the past decade has dealt with the development of numerical models for predicting droplet distribution profiles. Although these results have been valuable, the experimental results have been contradictory, therefore fundamental understanding of the influence of properties in nozzle is important. This paper experimentally investigates the effect of surfactants on breakup and coalescence. Since most of the fuels and biofuels have low surface tension compared to water, a comparative analysis between a surfactant solution and a liquid fuel is imperative. For this experimental study, a simplex nozzle characterized as flow number 0.4 will be utilized. The injection pressures will range from 0.3 - 4Mpa while altering the surface tension from 72 to 28mN/m. By applying Phase Doppler Particle Anemometry (PDPA) which is a non-intrusive laser diagnostic technique, the differences in spray characteristics due to spray surface tension can be highlighted. The average droplet diameter decreases for a low surface tension fluid in the axial direction in comparison to pure water. The average velocity of droplets is surprisingly lower in the same spray zone. Measurements made in the radial direction show no significant changes, but at the locations close to the nozzle, water droplets have larger diameter and velocity. The results indicate the breakup and coalescence regimes have been altered when surface tension is lowered. A decrease in surface tension alters the breakup length while increasing the spray angle. Moreover, higher injection pressure shortens the breakup length and decrease in overall diameter of the droplets. By performing this experimental study the fundamentals of spray dynamics, such as spray formation, liquid breakup length, and droplet breakup regimes can be observed as a function of surface tension and how a surrogate fuel compares with a real fuel for experimental purposes. This knowledge potentially will lead to designing a better atomizer or new biofuels.
Resumo:
Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25 degrees having an average inter-molecular separation of similar to 5 angstrom. Interestingly, we find an overall tilt angle of 43 degrees between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column. (C) 2015 AIP Publishing LLC.
Resumo:
We have investigated the impact of partially wetting particles of tens of micrometers on inversion instability of agitated liquid liquid dispersions. Particles of this size can be easily separated from the exit streams to avoid downstream processing-related issues. The results show that the presence of hydrophilic particles in small quantities (volume fraction range of 2 X 10(-4) to 1.25 x 10(-2)) significantly decreases the dispersed phase fraction at which water-in-oil (w/o) dispersions invert but leaves the inversion of oil-in-water (o/w) dispersions nearly unaffected. The addition of the same particles after they are hydrophobized decreases the dispersed phase fraction at which o/w dispersions invert but leaves the inversion of w/o dispersions unaffected. These findings suggest an increased rate of coalescence of drops when particles wet drops preferentially and a marginal decrease when they wet the continuous phase preferentially. High-speed conductivity measurements on w/o dispersion show transient conduction of a few hundred milliseconds duration through voltage pulses. Close to the inversion point, voltage pulses appear at high frequency for even 7 cm separation between the electrodes. The presence of hydrophilic particles produces a nearly identical signal at a significantly lower dispersed phase fraction itself, close to the new lowered inversion point in the presence of particles. We propose formation of elongated domains of the conducting dispersed phase through a rapid coalescence-deformation-breakup process to explain the new observations. The voltage signal appears as a forerunner of inversion instability.
Resumo:
Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (L-alpha) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the L-alpha phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the L-alpha phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.
Resumo:
A comprehensive numerical investigation on the impingement and spreading of a non-isothermal liquid droplet on a solid substrate with heterogeneous wettability is presented in this work. The time-dependent incompressible Navier-Stokes equations are used to describe the fluid flow in the liquid droplet, whereas the heat transfer in the moving droplet and in the solid substrate is described by the energy equation. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the time-dependent incompressible Navier-Stokes equation and the energy equation in the time-dependent moving domain. Moreover, the Marangoni convection is included in the variational form of the Navier-Stokes equations without calculating the partial derivatives of the temperature on the free surface. The heterogeneous wettability is incorporated into the numerical model by defining a space-dependent contact angle. An array of simulations for droplet impingement on a heated solid substrate with circular patterned heterogeneous wettability are presented. The numerical study includes the influence of wettability contrast, pattern diameter, Reynolds number and Weber number on the confinement of the spreading droplet within the inner region, which is more wettable than the outer region. Also, the influence of these parameters on the total heat transfer from the solid substrate to the liquid droplet is examined. We observe that the equilibrium position depends on the wettability contrast and the diameter of the inner surface. Consequently. the heat transfer is more when the wettability contrast is small and/or the diameter of inner region is large. The influence of the Weber number on the total heat transfer is more compared to the Reynolds number, and the total heat transfer increases when the Weber number increases. (C) 2015 Elsevier Ltd. All rights reserved.