428 resultados para INTERSTITIAL-FREE STEEL
Resumo:
Degree of branching (DB) describes the level of structural perfection of a hyperbranched polymer when compared to its defect-free analogue, namely the dendrimer. The strategy most commonly used to achieve high DB values, specifically while using AB(2) type self-condensations, is to design an AB2 monomer wherein the reaction of the first B-group leads to an enhancement of the reactivity of the second one. In the present study, we show that an AB2 monomer carrying a dimethylacetal unit and a thiol group undergoes a rapid self-condensation in the melt under acid-catalysis to yield a hyperbranched polydithioacetal with no linear defects. NMR studies using model systems reveal that the intermediate monothioacetal is relatively unstable under the polymerization conditions and transforms rapidly to the dithioacetal; because this second step occurs irreversibly during polymer formation, it leads to a defect-free hyperbranched polydithioacetal. TGA studies of the polymerization process provided some valuable insights into the kinetics of polymerization. An additional virtue of this approach is that the numerous terminal dimethylacetal groups are very labile and can be quantitatively transformed by treatment with a variety of functional thiols; the terminal dimethylacetals were, thus, reacted with various thiols, such as dodecanethiol, benzyl mercaptan, ethylmercaptopropionate, and so on, to demonstrate the versatility of these systems as sulfur-rich hyperscaffolds to anchor different kinds of functionality on their periphery.
Resumo:
We report the fabrication of free-standing flexible inorganic/organic hybrid structures by exfoliating ZnO nanostructured films from the flat indium tin oxide (ITO)/silicon/sapphire substrates using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Strong interaction between ZnO and PEDOT: PSS and the thermomechanical response of PEDOT: PSS are the key issues for the exfoliation to prevail. The performance of the free-standing hybrid structures as rectifiers and photodetectors is better as compared to ITO supported hybrid structures. It is also shown that device properties of hybrid structures can be tuned by using different electrode materials. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729550]
Resumo:
There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Given a set of points P ⊆ R2, a conflict-free coloring of P w.r.t. rectangle ranges is an assignment of colors to points of P, such that each nonempty axisparallel rectangle T in the plane contains a point whose color is distinct from all other points in P ∩ T . This notion has been the subject of recent interest and is motivated by frequency assignment in wireless cellular networks: one naturally would like to minimize the number of frequencies (colors) assigned to base stations (points) such that within any range (for instance, rectangle), there is no interference. We show that any set of n points in R2 can be conflict-free colored with O(nβ∗+o(1)) colors in expected polynomial time, where β∗ = 3−√5 2 < 0.382.
Resumo:
Three dimensional digital model of a representative human kidney is needed for a surgical simulator that is capable of simulating a laparoscopic surgery involving kidney. Buying a three dimensional computer model of a representative human kidney, or reconstructing a human kidney from an image sequence using commercial software, both involve (sometimes significant amount of) money. In this paper, author has shown that one can obtain a three dimensional surface model of human kidney by making use of images from the Visible Human Data Set and a few free software packages (ImageJ, ITK-SNAP, and MeshLab in particular). Images from the Visible Human Data Set, and the software packages used here, both do not cost anything. Hence, the practice of extracting the geometry of a representative human kidney for free, as illustrated in the present work, could be a free alternative to the use of expensive commercial software or to the purchase of a digital model.
Resumo:
Promoter regions in the genomes of all domains of life show similar trends in several structural properties such as stability, bendability, curvature, etc. In current study we analysed the stability and bendability of various classes of promoter regions (based on the recent identification of different classes of transcription start sites) of Helicobacter pylori 26695 strain. It is found that primary TSS and operon-associated TSS promoters show significantly strong features in their promoter regions. DNA free-energy-based promoter prediction tool PromPredict was used to annotate promoters of different classes, and very high recall values (similar to 80%) are obtained for primary TSS. Orthologous genes from other strains of H. pylori show conservation of structural properties in promoter regions as well as coding regions. PromPredict annotates promoters of orthologous genes with very high recall and precision.
Resumo:
Conducting polymer microstructures for enzymatic biosensors are developed by a facile electrochemical route. Horseradish peroxide (HRP)-entrapped polypyrrole (PPy) films with bowl-shaped microstructures are developed on stainless steel (SS 304) substrates by a single-step process. Potentiodynamic scanning/cyclic voltammetry is used for generation of PPy microstructures using electrogenerated oxygen bubbles stabilized by zwitterionic surfactant/buffer N-2-hydroxyethylpiperazine N-2-ethanesulfonic acid as soft templates. Scanning electron microscopic images reveal the bowl-shaped structures surrounded by cauliflower-like fractal PPy films and globular nanostructures. Raman spectroscopy reveals the oxidized nature of the film. Sensing properties of PPy-HRP films for hydrogen peroxide (H2O2) are demonstrated. Electrochemical characterization of the sensor films is done by linear sweep voltammetry (LSV) and amperometry. LSV results indicated the reduction of H2O2 and linearity in response of the sensing film. The amperometric biosensor has a performance comparable to those in the literature with advantages of hard-template free synthesis procedure and a satisfactory sensitivity value of 12.8 mu A/(cm(2) . mM) in the range of 1-10 mM H2O2.
Resumo:
The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity of the MWIS problem for hole-free graphs is unknown. In this paper, we first prove that the MWIS problem for (hole, dart, gem)-free graphs can be solved in O(n(3))-time. By using this result, we prove that the MWIS problem for (hole, dart)-free graphs can be solved in O(n(4))-time. Though the MWIS problem for (hole, dart, gem)-free graphs is used as a subroutine, we also give the best known time bound for the solvability of the MWIS problem in (hole, dart, gem)-free graphs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The concentration of a nonionic surfactant and water pH were varied in an oil-in-water emulsion to minimize the friction coefficient between a steel ball sliding on a steel flat. At a surfactant concentration near the CMC (critical micelle concentration) the oil droplet size was found to be minimum. In this paper we study the microstructure of the surfactant molecules self-assembled on the steel substrate in water to comment on the ability of the surfactant aggregate to attract and retain oil. We find that a near semicylindrical hemimiceller microstructure with hydrocarbon tails projecting into bulk water as obtained at CMC in near neutral water is best able to capture and retain oil in yielding a low coefficient of friction.
Resumo:
A steel ball was slid on a steel flat lubricated by molybdenum disulfide (MoS2) particles suspended in hexadecane oil at 150 degrees C. The friction data is compared with that obtained when the ball was slid on the flat sprayed apriori with nominally dry MoS2 particles. The friction in the dry experiment was found to increase with temperature while the friction in wet condition was found to decrease with increasing temperature. Micro-Raman and Fourier transform IR spectroscopy are used to explore the roles of environmental moisture and chemical degradation of oil on the formation of antifriction film on the steel substrate.
Resumo:
We present a detailed study of a 3+2+1] cascade cyclisation of vinylcyclopropanes (VCP) catalysed by a bromenium species (Brd+?Xd-) generated in situ, which results in the synthesis of chiral bicyclic amidines in a tandem one-pot operation. The formation of amidines involves the ring-opening of VCPs with Br?X, followed by a Ritter-type reaction with chloramine-T and a tandem cyclisation. The reaction has been further extended to vinylcyclobutane systems and involves a 4+2+1] cascade cyclisation with the same reagents. The versatility of the methodology has been demonstrated by careful choice of VCPs and VCBs to yield bicyclo4.3.0]-, -4.3.1]- and -4.4.0]amidines in enantiomerically pure form. On the basis of the experimental observations and DFT calculations, a reasonable mechanism has been put forth to account for the formation of the products and the observed stereoselectivity. We propose the existence of a p-stabilised homoallylic carbocation at the cyclopropane carbon as the reason for high stereoselectivity. DFT studies at B3LYP/6-311+G** and M06-2X/6-31+G* levels of theory in gas-phase calculations suggest the ring-opening of VCP is initiated at the p-complex stage (between the double bond and Br?X). This can be clearly perceived from the solution-phase (acetonitrile) calculations using the polarisable continuum model (PCM) solvation model, from which the extent of the ring opening of VCP was found to be noticeably high. Studies also show that the formation of zero-bridge bicyclic amidines is favoured over other bridged bicyclic amidines. The energetics of competing reaction pathways is compared to explain the product selectivity.
Resumo:
In this work, Plasma Nitriding was carried out at a temperature of 570 degrees C on nuclear grade austenitic stainless steel type AISI 316 LN (316LN SS) in a gas mixture of 20% N-2-80% H-2 to improve the surface hardness and thereby sliding wear resistance. The Plasma Nitride (PN) treated surface has been characterized by Vickers microhardness measurements, Scanning Electron Microscopic (SEM) examination, X-ray Diffraction (XRD) and sliding wear assessment. The average thickness of the PN layer was found to be 70 mu m. Microhardness measurements showed a significant increase in the hardness from 210 HV25g (unnitrided sample) to 1040 HV25g (Plasma Nitrided sample). The XRD reveals that PN layer consists of CrN, Fe4N and Fe3N phases along with austenite phase. The tribological parameters such as the friction coefficient and wear mechanism have been evaluated at ambient conditions for PN treated ring (PN ring) vs. ASTM A453 grade 660 pin (ASTM pin), PN ring vs. Nickel based alloy hard faced pin (Colmonoy pin), PN ring vs. 316LN SS pin and 316LN SS ring vs. 316LN SS pin. The wear tracks have been analyzed by SEM, Energy Dispersive X-ray Analysis (EDX) and Optical Profilometry. The untreated 316LN SS ring vs. 316LN SS pin produced severe wear and was characterized by a combination of delamination and adhesion wear mechanism, whereas wear mechanism of the PN rings reveals mild abrasion and a transfer layer from pin materials. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates are investigated using the iso-geometric based finite element method. The field variables are approximated by non-uniform rational B-splines. The nonlocal constitutive relation is based on Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG plate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of the FG nanoplate. From the detailed numerical study it is seen that the fundamental frequency decreases with increasing gradient index and characteristic internal length. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G) ? ? + 2, where ? = ?(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|-1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a'(G) ? ? + 3. Triangle-free planar graphs satisfy Property A. We infer that a'(G) ? ? + 3, if G is a triangle-free planar graph. Another class of graph which satisfies Property A is 2-fold graphs (union of two forests). (C) 2011 Wiley Periodicals, Inc. J Graph Theory
Resumo:
A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.