354 resultados para Electron-phonon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF(2)-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V4+ ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a ``preferential substitution model''. Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of. the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new electron-rich metal-organic frameworks (MOF-1-MOF-3) have been synthesized by employing ligands bearing aromatic tags. The key role of the chosen aromatic tags is to enhance the -electron density of the luminescent MOFs. Single-crystal X-ray structures have revealed that these MOFs form three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These highly luminescent electron-rich MOFs have been successfully utilized for the detection of explosive nitroaromatic compounds (NACs) on the basis of fluorescence quenching. Although all of the prepared MOFs can serve as sensors for NACs, MOF-1 and MOF-2 exhibit superior sensitivity towards 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT) compared to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). MOF-3, on the other hand, shows an order of sensitivity in accordance with the electron deficiencies of the substrates. To understand such anomalous behavior, we have thoroughly analyzed both the steady-state and time-resolved fluorescence quenching associated with these interactions. Determination of static Stern-Volmer constants (K-S) as well as collisional constants (K-C) has revealed that MOF-1 and MOF-2 have higher K-S values with 4-NT than with TNT, whereas for MOF-3 the reverse order is observed. This apparently anomalous phenomenon was well corroborated by theoretical calculations. Moreover, recyclability and sensitivity studies have revealed that these MOFs can be reused several times and that their sensitivities towards TNT solution are at the parts per billion (ppb) level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoniazid (isonicotinohydrazide) is an important first-line antitubercular drug that targets the InhA enzyme which synthesizes the critical component of the mycobacterial cell wall. An experimental charge-density analysis of isoniazid has been performed to understand its structural and electronic properties in the solid state. A high-resolution single-crystal X-ray intensity data has been collected at 90 K. An aspherical multipole refinement was carried out to explore the topological and electrostatic properties of the isoniazid molecule. The experimental results were compared with the theoretical charge-density calculations performed using CRYSTAL09 with the B3LYP/6-31G** method. A topological analysis of the electron density reveals that the Laplacian of electron density of the N-N bond is significantly less negative, which indicates that the charges at the b.c.p. (bond-critical point) of the bond are least accumulated, and so the bond is considered to be weak. As expected, a strong negative electrostatic potential region is present in the vicinity of the O1, N1 and N3 atoms, which are the reactive locations of the molecule. The C-H center dot center dot center dot N, C-H center dot center dot center dot O and N-H center dot center dot center dot N types of intermolecular hydrogen-bonding interactions stabilize the crystal structure. The topological analysis of the electron density on hydrogen bonding shows the strength of intermolecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si: P and Ge: P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterning nanostructures on flexible substrates plays a key role in the emerging flexible electronics technology. The flexible electronic devices are inexpensive and can be conformed to any shape. The potential applications for such devices are sensors, displays, solar cells, RFID, high-density biochips, optoelectronics etc. E-beam lithography is established as a powerful tool for nanoscale fabrication, but its applicability on insulating flexible substrates is often limited because of surface charging effects. This paper presents the fabrication of nanostructures on insulating flexible substrates using low energy E-beam lithography along with metallic layers for charge dissipation. Nano Structures are patterned on different substrates of materials such as acetate and PET foils. The fabrication process parameters such as the proximity gap of exposure, the exposure dosage and developing conditions have been optimized for each substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.