307 resultados para Doping (additives)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research in copper-based quaternary chalcogenide materials has been found to be interesting for the study of thermoelectric properties because of their low thermal conductivity due to complex crystal structures. In the present work, stoichiometric quaternary chalcogenide compounds Cu2CdSn1-xInxSe4(x = 0, 0.025, 0.05, 0.1) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I (4) over bar 2m of the main phase. In addition to this phase, a small amount of impurity phase CdSe was present in all the samples, as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by an Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 350 K-723 K. The positive Seebeck coefficient of all the compounds indicate that the majority carriers are holes. The Seebeck coefficient and electrical resistivity did not follow the trend in the expected manner with In doping, which could be influenced by the presence of the impurity phases. The total thermal conductivity of all the samples was dominated by the lattice thermal conductivity, while the electronic contribution was very small due to the low carrier contribution. A lattice thermal conductivity decrease with an increase of temperature indicates the dominance of phonon-phonon scattering at higher temperatures. The maximum figure of merit zT = 0.30 at 723 K was obtained for the compound Cu2CdSn0.9In0.1Se4. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2. (C) 2016 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using in situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that phonons with A(g) symmetry depend much more strongly on concentration of electrons than that of holes, wheras phonons with B-g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving pi and sigma bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of vanadium and nitrogen co-doped TiO2 for photocatalysis mainly emphasizing the state of nitrogen doping into TiO2 in the presence of vanadium ions. Considering the increase in antibiotic resistance developed by microbes due to the excess of pharmaceutical waste in the ecosystem, the photocatalytic activity was measured by degrading an antibiotic, chloramphenicol. A novel experiment was conducted by degrading the antibiotic and bacteria in each other's vicinity to focus on their synergistic photo-degradation by V-N co-doped TiO2. The catalysts were characterized using XRD, DRS, PL, TEM, BET and XPS analysis. Both interstitial and substitutional nitrogen doping were achieved with V-TiO2, showing high efficiency under visible light for antibiotic and bacterial degradation. In addition, the effect of doping concentration of nitrogen and vanadium in TiO2 and catalyst loading was studied thoroughly. Reusability experiments show that the prepared V-N co-doped TiO2 was stable for many cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of ZnO nanowires in ambient air at 650 degrees C by a single-step vapor transport method using two different sources Zn (ZnO nanowires-I) and Zn:Cu (ZnO nanowires-II). The Zn:Cu mixed source co-vaporize Zn with a small amount of Cu at temperatures where elemental Cu source does not vaporize. This method provides us a facile route for Cu doping into ZnO. The aspect ratio of the grown ZnO nanowires-II was found to be higher by more than five times compared ZnO nanowires-I. Photocatalytic activity was measured by using a solar simulator and its ultraviolet-filtered light. The ZnO nanowires-II shows higher catalytic activity due to increased aspect ratio and higher content of surface defects because of incorporation of Cu impurities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed work discusses different parameters which are considered to improve the performance of a tin oxide-based thin film gas sensor. This includes analysing and deducing suitable catalytic additives to enhance the performance of the sensor in terms of selectivity and sensitivity. Chemical sensitization and electronic sensitization are performed to improve the rate of response of the sensor.