344 resultados para Cargo Motor Transport
Resumo:
The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013); Nath et al., Phys. Rev. E 88, 013010 (2013)] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a ``cold'' accretion flow at 3000Kis too ``hot'' in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.
Resumo:
Special switching sequences involving division of active state time are used in space-vector-based generation of pulse width modulation (PWM) waveforms. This paper proposes a hybrid PWM technique which is a combination of the conventional and special switching sequences. The proposed hybrid PWM technique reduces the peak-to-peak torque ripple at high speeds of an induction motor drive. Supporting simulation and experimental results are presented from a closed-loop controlled motor drive.
Resumo:
Optimal switching angles for minimization of total harmonic distortion of line current (I-THD) in a voltage source inverter are determined traditionally by imposing half-wave symmetry (HWS) and quarter-wave symmetry (QWS) conditions on the pulse width modulated waveform. This paper investigates optimal switching angles with QWS relaxed. Relaxing QWS expands the solution space and presents the possibility of improved solutions. The optimal solutions without QWS are shown here to outperform the optimal solutions with QWS over a range of modulation index (M) between 0.82 and 0.94 for a switching frequency to fundamental frequency ratio of 5. Theoretical and experimental results are presented on a 2.3kW induction motor drive.
Resumo:
The advent of a new class of high-mobility semiconducting polymers opens up a window to address fundamental issues in electrical transport mechanism such as transport between localized states versus extended state conduction. Here, we investigate the origin of the ultralow degree of disorder (E-a similar to 16 meV) and the ``bandlike'' negative temperature (T) coefficient of the field effect electron mobility: mu(e)(FET) (T) in a high performance (mu(e)(FET) > 2.5 cm(2) V-1 s(-1)) diketopyrrolopyrrole based semiconducting polymer. Models based on the framework of mobility edge with exponential density of states are invoked to explain the trends in transport. The temperature window over which the system demonstrates delocalized transport was tuned by a systematic introduction of disorder at the transport interface. Additionally, the Hall mobility (mu(e)(Hall)) extracted from Hall voltage measurements in these devices was found to be comparable to field effect mobility (mu(e)(FET)) in the high T bandlike regime. Comprehensive studies with different combinations of dielectrics and semiconductors demonstrate the effectiveness of rationale molecular design, which emphasizes uniform-energetic landscape and low reorganization energy.
Resumo:
This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.
Resumo:
In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of L0.8-xPr0.2SrxMnO3 (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO3 (STO) substrate using low cost chemical solution deposition (CSD) method. Films with similar compositions were also grown using sophisticated pulsed laser deposition (PLD) technique and results of structural and transport studies obtained for CSD grown films were compared with PLD grown films. Structural studies show that all the CSD and PLD grown films possess single crystalline nature with compressive and tensile strain, respectively. Surface morphology, studied using atomic force microscope (AFM), reveals the island like grain morphology in CSD grown films while PLD grown films possess smooth film surfaces. Carrier density dependent transport properties of the films have been discussed in the context of zener double exchange (ZDE) mechanism. Lower resistivity and higher transition temperature (T-p) observed in CSD grown films as compared to PLD grown films have been discussed in the light of structural strain and surface morphology of the films. Various models and mechanisms have been employed to understand the charge transport in CSD and PLD grown films. Also, observation of low temperature resistivity minima behavior in all the CSD and PLD grown LPSMO films has been explained in the context of electron-electron scattering mechanism. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Suppression of the aggregation of proteins has tremendous implications in biology and medicine. In the pharmaceuticals industry, aggregation of therapeutically important proteins and peptides while stored, reduces the efficacy and promptness of action leading to, in many instances, intoxication of the patient by the aggregate. Here we report the effect of gold nanoparticles (Au-NPs) in preventing the thermal and chemical aggregation of two unrelated proteins of different size, alcohol dehydrogenase (ADH, 84 kDa) and insulin (6 kDa), respectively, in physiological pH. Our principal observation is that there is a significant reduction (up to 95%) in the extent of aggregation of ADH and insulin in the presence of gold nanoparticles (Au-NPs). Aggregation of these proteins at micromolar concentration is prevented using nanomolar or less amounts of gold nanoparticles which is remarkable since chaperones which prevent such aggregation in vivo are required in micromolar quantity. The prevention of aggregation of these two different proteins under two different denaturing environments has established the role of Au-NPs as a protein aggregation prevention agent. The extent of prevention increases rapidly with the increase in the size of the gold nanoparticles. Protein molecules get physisorbed on the gold nanoparticle surface and thus become inaccessible by the denaturing agent in solution. This adsorption of proteins on AuNPs has been established by a variety of techniques and assays.
Resumo:
This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.
Resumo:
We first discuss how the flux transport dynamo with reasonably high diffusion can explain both the regular and the irregular features of the solar cycle quite well. Then, we critically examine the inadequacies of the model and the challenge posed by some recent observational data about meridional circulation, arriving at a conclusion that this model can still work within the bounds of observational data.
Resumo:
Effect of MnO addition on microstructure and ionic transport properties of nanocrystalline cubic(c)-ZrO2 is reported. Monoclinic (m) ZrO2 powders with 10-30 mol% MnO powder are mechanically alloyed in a planetary ball mill at room temperature for 10 h and annealed at 550 degrees C for 6 h. In all compositions m-ZrO2 transforms completely to nanocrystalline c-ZrO2 phase and MnO is fully incorporated into c-ZrO2 lattice. Rietveld's refinement technique is employed for detailed microstructure analysis by analyzing XRD patterns. High resolution transmission electron microscopy (HRTEM) analysis confirms the complete formation of c-ZrO2 phase. Presence of stoichiometric Mn in c-ZrO2 powder is confirmed by Electron Probe Microscopy analysis. XPS analysis reveals that Mn is mostly in Mn2+ oxidation state. A correlation between lattice parameter and oxygen vacancy is established. A detailed ionic conductivity measurement in the 250 degrees-575 degrees C temperature range describes the effect of MnO on conductivity of c-ZrO2. The ionic conductivity (s) of 30 mol% MnO alloyed ZrO2 at 550 degrees C is 0.04 s cm(-1). Electrical relaxation studies are carried out by impedance and modulus spectroscopy. Relaxation frequency is found to increase with temperature and MnO mol fraction. Electrical characterization predicts that these compounds have potentials for use as solid oxide fuel cell electrolyte material. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.
Resumo:
We study Majorana modes and transport in one-dimensional systems with a p-wave superconductor (SC) and normal metal leads. For a system with an SC lying between two leads, it is known that there is a Majorana mode at the junction between the SC and each lead. If the p-wave pairing Delta changes sign or if a strong impurity is present at some point inside the SC, two additional Majorana modes appear near that point. We study the effect of all these modes on the sub-gap conductance between the leads and the SC. We derive an analytical expression as a function of Delta and the length L of the SC for the energy shifts of the Majorana modes at the junctions due to hybridization between them; the shifts oscillate and decay exponentially as L is increased. The energy shifts exactly match the location of the peaks in the conductance. Using bosonization and the renormalization group method, we study the effect of interactions between the electrons on Delta and the strengths of an impurity inside the SC or the barriers between the SC and the leads; this in turn affects the Majorana modes and the conductance. Finally, we propose a novel experimental realization of these systems, in particular of a system where Delta changes sign at one point inside the SC.
Resumo:
Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.
Resumo:
In this paper, based on the holographic techniques, we explore the hydrodynamics of charge diffusion phenomena in non commutative N = 4 SYM plasma at strong coupling. In our analysis, we compute the R charge diffusion rates both along commutative as well as the non commutative coordinates of the brane. It turns out that unlike the case for the shear viscosity, the DC conductivity along the non commutative direction of the brane differs significantly from that of its cousin corresponding to the commutative direction of the brane. Such a discrepancy however smoothly goes away in the limit of the vanishing non commutativity.