317 resultados para COPPER ELECTRODE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study addresses the evolution of texture and microstructure during annealing in a cryorolled copper. Transition from copper to brass texture during the cryo-rolling has been illustrated. Twinning and interaction between twins and shear bands have been found to play the important role in grain refinement and strengthening. The low temperature vacancy clustering and its effect on the recrystallization have been experimentally demonstrated. Fine scale twinning, and grain refinement have been attributed to the higher yield strength found in the case of samples subjected to cryo-rolling. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium nanoparticles-anchored reduced graphene oxide (Ir-RGO) was prepared by simultaneous reduction of graphene oxide and Ir3+ ions and its catalytic activity for oxygen electrode in Li-O-2 cells was demonstrated. Ir particles with an average size of 3.9 nm were uniformly distributed on RGO sheets. The oxygen reduction reaction (ORR) was studied on an Ir-RGO catalyst in non-aqueous electrolytes using cyclic voltammetry and rotating disk electrode techniques. Li-O-2 cells with Ir-RGO as a bifunctional oxygen electrode catalyst were subjected to charge-discharge cycling at several current densities. A discharge capacity of 9529 mA h g(-1) (11.36 mA h cm(-2)) was obtained initially at a current density of 0.5 mA cm(-2) (393 mA g(-1)). A decrease in capacity was observed on increasing the current density. Although there was a decrease in capacity on repeated discharge-charge cycling initially, a stable capacity was observed for about 30 cycles. The results suggest that Ir-RGO is a useful catalyst for rechargeable Li-O-2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene was produced by electrochemical exfoliation of a used battery electrode. Aqueous solutions of cationic (cetyltrimethylammonium bromide), anionic (sodium dodecyl sulphate), and nonionic (poly vinyl pyrrolidone) surfactants, along with NaCl and combinations of these surfactants with NaCl, were used as the electrolyte. The following observations were made: (I) up to several micrometer sized graphene sheets were produced, (II) the addition of NaCl into the electrolytes significantly enhanced the yield of the exfoliated graphene, (III) the type of surfactant affected the defect density of the exfoliated product, and (IV) electrochemical impedance spectroscopy provided insight into the reason for the changes in the defect density ratio between the graphene samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of multiple phases on the evolution of texture during cold rolling and annealing of a copper-iron multilayer, fabricated by accumulative roll bonding, has been studied. The presence of an iron layer affects the deformation texture of the copper layer only at very large strains. On the other hand, a strong effect of copper on iron is observed at both small and large strains. At smaller strains, the larger deformation carried by the copper suppresses the texture development in the iron, whereas, at higher strains, selection of specific orientation relationship at the interface influences the texture of the iron layer. Shear banding and continuous dynamic recrystallization were found to influence the evolution of texture in the copper layer. The influence of large plastic deformation on the recrystallization behavior of copper is demonstrated with the suppression of typical fcc annealing texture components, described as constrained recrystallization. Evolution of typical annealing texture component is suppressed because of the multilayer microstructure. The plane of the interface formed during deformation is determined by a combination of the rolling texture of individual phases, constrained annealing, and the tendency to form a low-energy interface between the two phases during annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for harnessing more power from the sun for water treatment by photoelectrochemical degradation, we prepared a novel photoanode of exfoliated graphite (EG)-ZnO nanocomposite. The nanocomposite was characterised by X-ray diffractometry, energy dispersive spectroscopy, Brunauer-Emmett-Teller surface area analyser, thermal gravimetric analyser, and X-ray photoelectron spectroscopy. The EG-ZnO nanocomposite was fabricated into a photoanode and applied for the photoelectrochemical degradation of 0.1 x 10(-4) M eosin yellowish dye in 0.1 M Na2SO4 under visible light irradiation. The degradation was monitored with a visible spectrophotometer. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of ca. 93 % with kinetic rate of 11.0 x 10(-3) min(-1) over photolysis and electrochemical oxidation processes which exhibited lower degradation efficiencies of 35 and 40 % respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the first dielectric investigation of high-k yttrium copper titanate thin films, which were demonstrated to be very promising for nanoelectronics applications. The dielectric constant of these films is found to vary from 100 down to 24 (at 100 kHz) as a function of deposition conditions, namely oxygen pressure and film thickness. The physical origin of such variation was investigated in the framework of universal dielectric response and Cole-Cole relations and by means of voltage dependence studies of the dielectric constant. Surface-related effects and charge hopping polarization processes, strictly dependent on the film microstructure, are suggested to be mainly responsible for the observed dielectric response. In particular, the bulky behaviour of thick films deposited at lower oxygen pressure evolves towards a more complex and electrically heterogeneous structure when either the thickness decreases down to 50 nm or the films are grown under high oxygen pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the first dielectric investigation of high-k yttrium copper titanate thin films, which were demonstrated to be very promising for nanoelectronics applications. The dielectric constant of these films is found to vary from 100 down to 24 (at 100 kHz) as a function of deposition conditions, namely oxygen pressure and film thickness. The physical origin of such variation was investigated in the framework of universal dielectric response and Cole-Cole relations and by means of voltage dependence studies of the dielectric constant. Surface-related effects and charge hopping polarization processes, strictly dependent on the film microstructure, are suggested to be mainly responsible for the observed dielectric response. In particular, the bulky behaviour of thick films deposited at lower oxygen pressure evolves towards a more complex and electrically heterogeneous structure when either the thickness decreases down to 50 nm or the films are grown under high oxygen pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(Nile blue) modified glassy carbon electrode (PNBMGCE) was fabricated by electropolymerisation of Nile blue (NB) monomer using cyclic voltammetry (CV) and was used for the determination of paracetamol (ACOP), tramadol (TRA) and caffeine (CAF). The electrochemical investigations showed that PNB - film formed on the surface of glassy carbon electrode (GCE) improved the electroactive surface area and displayed a remarkable increase in the peak current and a substantial decrease in over potential of ACOP, TRA and CAF when compared to bare GCE. The dependence of peak current and potential on pH, sweep rate and concentration were also investigated at the surface of PNBMGCE. It showed good sensitivity and selectivity in a wide linear range from 2.0 x 10(-7) to 1.62 x 10(-5) M, 1.0 x 10(-6) to 3.1 x 10(-4) M and 8.0 x 10(-7) to 2.0 x 10(-5) M, with detection limits of 0.08, 0.5 and 0.1 mu M, for ACOP, TRA and CAF, respectively. The PNBMGCE was also successfully applied for the determination of ACOP, TRA and CAF in pharmaceutical dosage forms. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary copper(Il) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. Cu(bpy)(L)](ClO4) (1) and Cu(dppz)(L)](C104) (2), where bpy is 2,2'-bipyridine (in 1) and dppz is dipyrido3,2-a:2',3'-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (K-b) of similar to 10(5) M-1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming (OH)-O-center dot radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 mu M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.