386 resultados para B and T Lymphocyte Attenuator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (Pol gamma A/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of Pol gamma A. Kinetic constants for interactions between Pol gamma A-RECQL4, Pol gamma A-p53 and Pol gamma B-p53 indicate that RECQL4 and p53 are accessory factors for Pol gamma A-Pol gamma B and Pol gamma A-DNA interactions. RECQL4 enhances the binding of Pol gamma A to DNA, thereby potentiating the exonuclease and polymerization activities of Pol gamma A/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. Summary: The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various morphologies of Eu3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH)(3):Eu3+ phase and subsequent heat treatment at 350 and 600 degrees C transforms to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd2O3:Eu3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH)(3):Eu3+ sample with HDA confirms smooth nanorods with various diameters in the range 20-100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd2O3:Eu3+ (lambda(ex) = 254 nm) show red emission at 612 nm corresponding to D-5(0)-> F-7(2) and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH)(3):Eu3+ is more when compared to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the recently measured accurate BaBaR data on the modulus of the pion electromagnetic form factor,Fπ(t), up to an energy of 3 GeV, the I=1P-wave phase of the π π scattering ampli-tude up to the ω−π threshold, the pion charge radius known from Chiral Perturbation Theory,and the recently measured JLAB value of Fπ in the spacelike region at t=−2.45GeV2 as inputs in a formalism that leads to bounds on Fπ in the intermediate spacelike region. We compare our constraints with experimental data and with perturbative QCD along with the results of several theoretical models for the non-perturbative contribution s proposed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nano ZnFe2O4 compound was prepared by eco-friendly hydrothermal method. The characterization of the sample for its structure, morphology and composition were done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, Fourier transform infrared spectroscopy, zeta surface profiler and UV-Visible spectroscopy studies. The PXRD measurement reveals that the compound shows spinel cubic phase belong Fd (3) over barm (227) space group. Morphology of the compound from SEM and surface profile shows nearly spherical agglomerated particles with well defined grains and grain boundaries. The material shows the semiconducting behavior with E-g of 2.3 eV at room temperature (RT). The variation in the magnetic ordering was observed for wide range of temperature. The compound behaves like a soft magnetic material with ferrimagnetic at various temperatures except at RT. Both magnetic and EPR studies supports the superparamagnetic behavior of the the sample. The DC conductivity, dielectric and AC conductivity behavior of the 1000 degrees C pellets sintered for 2 h shows good frequency dependent transport properties. The present study facilitate in selecting the suitable materials for the nanoelectronics and spintronic applications. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoluminescence properties of YAlO3:Dy3+ nanophosphor prepared by a low temperature solution combustion (SC) method using oxalyl dihydrazide as a fuel were studied and the results were compared to bulk phosphor prepared by solid state (SS) synthesis. Powder X-ray diffraction patterns confirm the orthorhombic phase of SC and SS methods. Rietveld refinement was used to estimate the cell parameters of undoped and Dy3+ doped YAlO3. Scanning electron micrographs reveal dumbbell shape particles. Electron paramagnetic resonance spectra of YAlO3:Dy3+ nanophosphors were studied at 293 K, 77 K and 10 K. Thermoluminescence responses of SC and SS prepared phosphor were studied using gamma irradiation in the dose range 0.1-6 kGy at a warming rate of 1 degrees C s (1) at room temperature (RT). The optimized concentrations of Dy3+ ions in YAlO3 was found to be 3 mol%. The trapping parameters (i. e. activation energy, frequency factor, order of kinetic) of all the individual peaks of the glow curves have been analysed by using Chen's method. The low fading and linear response in the wide range (0.1-1 kGy) suggests the possibility of usage of SC prepared phosphor in dosimeter applications. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern pulse-width-modulated (PWM) rectifiers use LC L filters that can be applied in both the common mode and differential mode to obtain high-performance filtering. Interaction between the passive L and C components in the filter leads to resonance oscillations. These oscillations need to be damped either by the passive damping or active damping. The passive damping increases power loss and can reduce the effectiveness of the filter. Methods of active damping, using control strategy, are lossless while maintaining the effectiveness of the filters. In this paper, an active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground. An approach based on pole placement by the state feedback is used to actively damp both the differential-and common-mode filter oscillations. Analytical expressions for the state-feedback controller gains are derived for both continuous and discrete-time model of the filter. Tradeoff in selection of the active damping gain on the lower order power converter harmonics is analyzed using a weighted admittance function. Experimental results on a 10-kVA laboratory prototype PWM rectifier are presented. The results validate the effectiveness of the active damping method, and the tradeoff in the settings of the damping gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of multiple site damage in aged airplane fuselage is handled in this paper. The analytical and numerical procedures used for the estimation of the strength of a flat panel with such multi-site damage are presented. Further, numerical results are presented on the residual strength of the panel using fracture mechanics-based approach and the stress levels when the leading crack is likely to link up with multiple site damage cracks. The presence of multiple site damage cracks in the vicinity of leading crack significantly decreases the residual strength of the panel. The model is verified using experimental data from the open literature and the predictions are in good agreement with the measured residual strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-pion contribution from low energies to the muon magnetic moment anomaly, although small, has a large relative uncertainty since in this region the experimental data on the cross sections are neither sufficient nor precise enough. It is therefore of interest to see whether the precision can be improved by means of additional theoretical information on the pion electromagnetic form factor, which controls the leading-order contribution. In the present paper, we address this problem by exploiting analyticity and unitarity of the form factor in a parametrization-free approach that uses the phase in the elastic region, known with high precision from the Fermi-Watson theorem and Roy equations for pi pi elastic scattering as input. The formalism also includes experimental measurements on the modulus in the region 0.65-0.70 GeV, taken from the most recent e(+)e(-) ->pi(+)pi(-) experiments, and recent measurements of the form factor on the spacelike axis. By combining the results obtained with inputs from CMD2, SND, BABAR, and KLOE, we make the predictions a(mu)(pi pi,LO)2m(pi), 0.30 GeV] = (0.553 +/- 0.004) x 10(-10) and a(mu)(pi pi,LO)0.30 GeV; 0.63 GeV] = (133.083 +/- 0.837) x 10(-10). These are consistent with the other recent determinations and have slightly smaller errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract t list-type=''bulleted'' id=''febs12727-list-0001''> andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a detailed magnetic, dielectric and Raman studies on partially disordered and biphasic double perovskite La2NiMnO6. DC and AC magnetic susceptibility measurements show two magnetic anomalies at T-C1 similar to 270 K and T-C2 similar to 240 K, which may indicate the ferromagnetic ordering of the monoclinic and rhombohedral phases, respectively. A broad peak at a lower temperature (T-sg similar to 70 K) is also observed indicating a spin-glass transition due to partial anti-site disorder of Ni2+ and Mn4+ ions. Unlike the pure monoclinic phase, the biphasic compound exhibits a broad but a clear dielectric anomaly around 270 K which is a signature of magneto-dielectric effect. Temperature-dependent Raman studies between the temperature range 12-300 K in a wide spectral range from 220 cm(-1) to 1530 cm(-1) reveal a strong renormalization of the first as well as second-order Raman modes associated with the (Ni/Mn)O-6 octahedra near T-C1 implying a strong spin-phonon coupling. In addition, an anomaly is seen in the vicinity of spin-glass transition temperature in the temperature dependence of the frequency of the anti-symmetric stretching vibration of the octahedra. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present femtosecond time-resolved pump-probe spectroscopic studies of a pseudogap (PG) along with the superconducting (SC) gap in an overdoped iron pnictide Ca(Fe0.927Co0.073)(2)As-2. It is seen that the temperature evolution of the photo-excited quasiparticle (QP) relaxation dynamics, coherently excited A(1g)-symmetric optical phonon and two acoustic phonon dynamics behave anomalously in the vicinity of the superconducting transition temperature T-c. A continuous change in the sign of the experimentally measured transient differential reflectivity Delta R/R signal at the zero time delay between the pump and probe pulses at a temperature of similar to 200K is inferred as an evidence of the emergence of the PG phase around that temperature. This behavior is independent of the pump photon energy and occurs for crystals without the spin density wave phase transition. Copyright (C) EPLA, 2014