303 resultados para 1995_03161505 TM-6 4500404
Resumo:
We have synthesized a series of 4'-aryl substituted 2,2':6',2 `'-terpyridine (terpy) derivatives, namely 4'-(4-methylphenyl)-2,2':6',2 `'-terpyridine (C-1), 4'-(2-furyl)-2,2':6'2 `'-terpyridine (C-2), and 4'-(3,4,5-trimethoxyphenyl)-2,2':6',2 `'-terpyridine (C-3). The synthesized terpy compounds were characterized by elemental analyses, FTIR, NMR (H-1 and C-13), and ESI-Mass spectrometry. Photophysical, electrochemical and thermal properties of terpy compounds were systematically studied. Maximum excitation band was observed between 240 and 330 nm using UV-visible spectra, and maximum emission peaks from PL spectra were observed at 385, 405 and 440 nm for C-1, C-2 and C-3 respectively. Fluorescence lifetime (tau) of the fluorophores was found to be 035 and 1.55 ns at the excitation wavelength of 406 nm for C-1 and C-2 respectively, and tau value for C-3 was found to be 0.29 ns at the excitation wavelength of 468 nm. We noticed that the calculated values of HOMO energy levels were increased from 5.96 (C-1) to 6.08 (C-3) eV, which confirms that C-3 derivative is more electrons donating in nature. The calculated electrochemical band gaps were 2.95, 2.82 and 3.02 eV for C-1, C-2 and C-3 respectively. These blue fluorescent emitter derivatives can be used as an electron transport and electroluminescent material to design the blue fluorescent organic light emitting diode (OLED) applications. (C) 2015 Elsevier B.V: All rights reserved.
Resumo:
The reaction of Ru(eta(6)-cymene)Cl-2](2) and PPh2Cl in the ratio 1:2 gives a stable Ru(h(6)-cymene) Cl-2(PPh2Cl)] complex. Attempts to make the cationic Ru(eta(6)-cymene)Cl(PPh2Cl)(2)]Cl with excess PPh2Cl and higher temperatures led to adventitious hydrolysis and formation of Ru(eta(6)-cymene)Cl-2(PPh2OH)]. Attempts to make a phosphinite complex by reacting Ru(eta(6)-cymene)Cl-2](2) with PPh2Cl in the presence of an alcohol results in the reduction of PPh2Cl to give Ru(eta(6)-cymene)Cl-2(PPh2H)] and the expected phosphinite. The yield of the hydride complex is highest when the alcohol is 1-phenyl-ethane-1,2-diol. All three half-sandwich complexes are characterized by X-ray crystallography. Surprisingly, the conversion of chlorodiphenylphosphine to diphenylphosphine is mediated by 1-phenyl-ethane-1,2-diol even in the absence of the ruthenium half-sandwich precursor.
Resumo:
Oceanic intraplate earthquakes are known to occur either on active ridge-transform structures or by reactivation of their inactive counterparts, generally referred to as fossil ridges or transforms. The Indian Ocean, one of the most active oceanic intraplate regions, has generated large earthquakes associated with both these types of structures. The moderate earthquake that occurred on 21 May 2014 (M-w 6.1) in the northern Bay of Bengal followed an alternate mechanism, as it showed no clear association either with active or extinct ridge-transform structures. Its focal depth of >50 km is uncommon but not improbable, given the similar to 90 Ma age of the ocean floor with 12-km-thick overlying sediments. No tectonic features have been mapped in the near vicinity of its epicenter, the closest being the 85 degrees E ridge, located similar to 100 km to its west, hitherto regarded as seismically inactive. The few earthquakes that have occurred here in the past are clustered around its southern or northern limits, and a few are located midway, at around 10 degrees N. The 2014 earthquake, sourced close to the northern cluster, seems to be associated with a northwest-southeast-oriented fracture, located on the eastern flanks of the 85 degrees E ridge. If this causal association is possible, we believe that reactivation of fossil hotspot trails could be considered as another mechanism for oceanic intraplate seismicity.