446 resultados para thermal regimes
Resumo:
We report the far-infrared measurements of the electron cyclotron resonance absorption in n-type Si/Si0. 62Ge0.38 and Si0.94Ge0.06 /Si0. 62Ge0.38 modulation- doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 μm uniform Si0.62Ge0.38 layers and 0.5 μm compositionally graded relaxed SiGe layers from 0% Ge to 38 % Ge. The buffer layers were annealed at 800 °C for 1 hr to obtain complete relaxation. The samples had 100 Å spacers and 300 Å 2×1019 cm-3 n-type supply layers on the tops of the 75 Å channels. The far-infrared measurements of electron cyclotron resonance were performed at 4K with the magnetic field of 4 – 8 Tesla. The effective masses determined from the slope of center frequency of absorption peak vs applied magnetic field plot are 0.20 mo and 0.19 mo for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of two dimensional electron gas in Si MOSFET (0.198mo). The electron effective mass of Si0.94Ge0.06 is reported for the first time and about 5 % lower than that of pure Si.
Resumo:
Creep resistant Mg alloy QE22 reinforced with maftec(R), saffil(R) or supertec(R) short fibres is cycled between room temperature and 308degreesC at different ramp rates in the longitudinal and transverse directions. From the careful analysis of the strain vs. temperature thermal cycling curves true material behaviour and artifacts from the dilatometer are deciphered. From this analysis true coefficient of thermal expansion and relaxation processes are deduced. Hysteresis at higher temperatures is attributed to the relaxation process, whereas hysteresis at low temperatures giving a tilt-ground shape to the thermal cycling curves is again an artifact due to the instrument. The change in ramp rate highlights this effect. Finally, the effect of thermal cycling on microstructure is examined.
Resumo:
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.
Resumo:
Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet.
Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV(2)O(7)
Resumo:
A new series of compounds identified in the phase diagram of ZrO(2)-V(2)O(8)-MoO(3) have been synthesized via the solution combustion method. Single crystals of one of the compounds in the series, ZrV(1.50)Mo(0.50)O(7.25), were grown by the melt-cool technique from the starting materials with double the MoO(3) quantity. The room temperature average crystal structure of the grown crystals was solved using the single crystal X-ray diffraction technique. The crystals belong to the cubic crystal system, space group Pa (3) over bar (No. 205) with a = 8.8969 (4) angstrom, V = 704.24 (6) angstrom(3), and Z = 4. The final R(1) value of 0.0213 was achieved for 288 independent reflections during the structure refinement. The Zr(4+) occupies the special position (4a) whereas V(5+) and Mo(6+) occupy two unique (8c) Wyckoff positions. Two fully occupied O atoms, (24d) and (4b), one partially occupied 0 atom (8c) have been identified for this molybdovanadate, which is a unique feature for these crystals. The structure is related to both ZrV(2)O(7) and cubic ZrMo(2)O(8). The temperature dependent single crystal studies show negative thermal expansion above 370 K. The compounds have been characterized by powder X-ray diffraction, solid-state UV-vis diffuse reflectance spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activity of these compounds has been investigated for the degradation of various dyes, and these compounds show specificity toward the degradation of non-azoic dyes.