399 resultados para selective metallization mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H-1 NMR spectroscopic discrimination of enantiomers in the solution state and the measurement of enantiomeric composition is most often hindered due to either very small chemical shift differences between the discriminated peaks or severe overlap of transitions from other chemically non-equivalent protons. In addition the use of chiral auxiliaries such as, crown ether and chiral lanthanide shift reagent may often cause enormous line broadening or give little degree of discrimination beyond the crown ether substrate ratio, hampering the discrimination. In circumventing such problems we are proposing the utilization of the difference in the additive values of all the chemical shifts of a scalar coupled spin system. The excitation and detection of appropriate highest quantum coherence yields the measurable difference in the frequencies between two transitions, one pertaining to each enantiomer in the maximum quantum dimension permitting their discrimination and the F-2 cross section at each of these frequencies yields an enantiopure spectrum. The advantage of the utility of the proposed method is demonstrated on several chiral compounds where the conventional one dimensional H-1 NMR spectra fail to differentiate the enantiomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper identified and characterized a special multi-degree of freedom toggle behavior, called double toggle, observed in a typical MCCB switching mechanism. For an idealized system, the condition of toggle sequence is derived geometrically. The existing tools available in a multi-body dynamics package are used for exploring the dynamic behavior of such systems parametrically. The double toggle mechanism is found to make the system insensitive to the operator's behavior; however, the system is vulnerable under extreme usage. The linkage kinematics and stopper locations are found to have dominant role on the behavior of the system. It is revealed that the operating time is immune to the inertial property of the input link and sensitive to that of the output link. Novel designs exploiting this observation, in terms of spring and toggle placements, to enhance switching performance have also been reported in the paper. Detailed study revealed that strategic placement of the spring helps in selective alteration of system performance. Thus, the study establishes the critical importance of the kinematic design of MCCB over the dynamic parameters. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. SuSeFLAV is a numerical tool capable of computing supersymmetric spectra precisely for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete 3 x 3 flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as l(j) -> l(i)gamma, l(j) -> 3 l(i), b -> s gamma and supersymmetric contributions to flavor conserving quantities such as (g(mu) - 2). A large choice of executables suitable for various operations of the program are provided. Program summary Program title: SuSeFLAV Catalogue identifier: AEOD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 76552 No. of bytes in distributed program, including test data, etc.: 582787 Distribution format: tar.gz Programming language: Fortran 95. Computer: Personal Computer, Work-Station. Operating system: Linux, Unix. Classification: 11.6. Nature of problem: Determination of masses and mixing of supersymmetric particles within the context of MSSM with conserved R-parity with and without the presence of Type-I seesaw. Inter-generational mixing is considered while calculating the mass spectrum. Supersymmetry breaking parameters are taken as inputs at a high scale specified by the mechanism of supersymmetry breaking. RG equations including full inter-generational mixing are then used to evolve these parameters up to the electroweak breaking scale. The low energy supersymmetric spectrum is calculated at the scale where successful radiative electroweak symmetry breaking occurs. At weak scale standard model fermion masses, gauge couplings are determined including the supersymmetric radiative corrections. Once the spectrum is computed, the program proceeds to various lepton flavor violating observables (e.g., BR(mu -> e gamma), BR(tau -> mu gamma) etc.) at the weak scale. Solution method: Two loop RGEs with full 3 x 3 flavor mixing for all supersymmetry breaking parameters are used to compute the low energy supersymmetric mass spectrum. An adaptive step size Runge-Kutta method is used to solve the RGEs numerically between the high scale and the electroweak breaking scale. Iterative procedure is employed to get the consistent radiative electroweak symmetry breaking condition. The masses of the supersymmetric particles are computed at 1-loop order. The third generation SM particles and the gauge couplings are evaluated at the 1-loop order including supersymmetric corrections. A further iteration of the full program is employed such that the SM masses and couplings are consistent with the supersymmetric particle spectrum. Additional comments: Several executables are presented for the user. Running time: 0.2 s on a Intel(R) Core(TM) i5 CPU 650 with 3.20 GHz. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the monotonic increase and the oscillation of electrical conductance in multiwalled carbon nanotubes with compressive strain. Combined experimental and theoretical analyses confirm that the conductance variation with strain is because of the transition from sp(2) to configurations that are promoted by the interaction of walls in the nanotubes. The intrawall interaction is the reason for the monotonic increase in the conduction, while the oscillations are attributable to interwall interactions. This explains the observed electromechanical oscillation in multiwalled nanotubes and its absence in single-walled nanotubes, thereby resolving a long-standing debate on the interpretation of these results. Moreover, the current carrying capability of nanotubes can be enhanced significantly by controlling applied strains. DOI: 10.1103/PhysRevLett.110.095504

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some bulk metallic glasses (BMGs) exhibit high crack initiation toughness due to shear band mediated plastic flow at the crack tip and yet do not display additional resistance to crack growth due to the lack of a microstructure. Thus, at crack initiation, the fracture behavior of BMGs transits from that of ductile alloys to that of brittle ceramics. In this paper, we attempt to understand the physics behind the characteristic length from the notch root at which this transition occurs, through testing of four-point bend specimens made of a nominally ductile Zr-based BMG in three different structural states. In the as-cast state, both symmetric (mode I) and asymmetric (mixed mode) bend specimens are tested. The process of shear band mediated plastic flow followed by crack initiation at the notch root was monitored through in situ imaging. Results show that stable crack growth occurs inside a dominant shear band through a distance of, similar to 60 mu m, irrespective of the structural state and mode mixity, before attaining criticality. Detailed finite element simulations show that this length corresponds to the distance from the notch root over which a positive hydrostatic stress gradient prevails. The mean ridge heights on fractured surfaces are found to correlate with the toughness of the BMG. The Argon and Salama model, which is based on the meniscus instability phenomenon at the notch root, is modified to explain the experimentally observed physics of fracture in ductile BMGs. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of fluoranthene derivatives (F1-F5) varied with nature and type of substituents were synthesized via Diels-Alder reaction followed by in situ decarbonylation. The solid state structures have been established through single crystal X-ray diffraction (XRD). The presence of extended conjugation and having two alkyloxy chains on phenyl rings induces flexibility to orient opposite to each other and interacts with another fluoranthene unit with weak pi-pi interactions and show unique supramolecular arrangements. The envisaged photophysical and DFT studies demonstrated that HOMO-LUMO levels were effectively tuned by different substituents with an optical band gap from 3.44 to 3.88 eV provoked to examine as sensitive fluorescent chemosensors for the detection of nitroaromatic compounds (NACs). The sensitivity toward the detection of NACs was evaluated through fluorescence quenching in solution (aqueous and non-aqueous) and solid state (vapor and contact mode). Fluorescence studies demonstrated that electron transfer occurs from the electron rich fluoranthene fluorophores to the electron deficient NACs by the dominant static quenching mechanism and the quenching process is reversible. It was found that the detection sensitivity increases with extent of conjugation on fluoranthene unit. The contact mode approach using thin layer silica chromatographic plates exhibits a femtogram (1.15 fg/cm(2)) detection limit for trinitrotoluene (TNT) and picric acid (PA), while the solution state fluorescence quenching shows for PA detection at the 2-20 ppb level. The sensing performance of fluoranthene thin films to NACs in aqueous solution reveals that fluorophores are highly selective towards the detection of PA. The smart performances of thin film fluorophores with high photostability have great advantage than those of conjugated polymers with superior sensitive detection of PA in groundwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative levels of different sigma factors dictate the expression profile of a bacterium. Extracytoplasmic function sigma factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function sigma factors is regulated by the localization of this protein in a sigma/anti-sigma complex. Anti-sigma factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-sigma domain (ASD) that binds a sigma factor. Here we describe the structure of Mycobacterium tuberculosis anti-sigma(D) (RsdA) in complex with the -35 promoter binding domain of sigma(D) (sigma(D)(4)). We note distinct conformational features that enable the release of sigma(D) by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the sigma(D)/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern sigma/anti-sigma interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the recent measurement of the reactor mixing angle theta(13) and updated limit on BRd(mu -> e gamma) by the MEG experiment, we reexamine the charged lepton flavor violations in a framework of the supersymmetric type II seesaw mechanism. The supersymmetric type II seesaw predicts a strong correlation between BR(mu -> e gamma) and BR(tau -> mu gamma) mainly in terms of the neutrino mixing angles. We show that such a correlation can be determined accurately after the measurement of theta(13). We compute different factors that can affect this correlation and show that the minimal supergravity-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 <= BR(tau -> mu gamma)/= BR(mu -> e gamma) <= 30 for normal hierarchical neutrino masses. Any experimental indication of deviation from this prediction would rule out the minimal models of the supersymmetric type II seesaw. We show that the current MEG limit puts severe constraints on the light sparticle spectrum in the minimal supergravity model if the seesaw scale lies within 10(13)-10(15) GeV. It is shown that these constraints can be relaxed and a relatively light sparticle spectrum can be obtained in a class of models in which the soft mass of a triplet scalar is taken to be nonuniversal at the high scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid development of communication and networking has lessened geographical boundaries among actors in social networks. In social networks, actors often want to access databases depending upon their access rights, privacy, context, privileges, etc. Managing and handling knowledge based access of actors is complex and hard for which broad range of technologies need to be called. Access based on dynamic access rights and circumstances of actors impose major tasks on access systems. In this paper, we present an Access Mechanism for Social Networks (AMSN) to render access to actors over databases taking privacy and status of actors into consideration. The designed AMSN model is tested over an Agriculture Social Network (ASN) which utilises distinct access rights and privileges of actors related to the agriculture occupation, and provides access to actors over databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe12O19 as the hard phase and CoFe2O4/MgFe2O4 as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20-700 degrees C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T).