323 resultados para quadratic polynomial
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.
Resumo:
In this paper, the free vibration of a rotating Euler-Bernoulli beam is studied using an inverse problem approach. We assume a polynomial mode shape function for a particular mode, which satisfies all the four boundary conditions of a rotating beam, along with the internal nodes. Using this assumed mode shape function, we determine the linear mass and fifth order stiffness variations of the beam which are typical of helicopter blades. Thus, it is found that an infinite number of such beams exist whose fourth order governing differential equation possess a closed form solution for certain polynomial variations of the mass and stiffness, for both cantilever and pinned-free boundary conditions corresponding to hingeless and articulated rotors, respectively. A detailed study is conducted for the first, second and third modes of a rotating cantilever beam and the first and second elastic modes of a rotating pinned-free beam, and on how to pre-select the internal nodes such that the closed-form solutions exist for these cases. The derived results can be used as benchmark solutions for the validation of rotating beam numerical methods and may also guide nodal tailoring. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Central to network tomography is the problem of identifiability, the ability to identify internal network characteristics uniquely from end-to-end measurements. This problem is often underconstrained even when internal network characteristics such as link delays are modeled as additive constants. While it is known that the network topology can play a role in determining the extent of identifiability, there is a lack in the fundamental understanding of being able to quantify it for a given network. In this paper, we consider the problem of identifying additive link metrics in an arbitrary undirected network using measurement nodes and establishing paths/cycles between them. For a given placement of measurement nodes, we define and derive the ``link rank'' of the network-the maximum number of linearly independent cycles/paths that may be established between the measurement nodes. We achieve this in linear time. The link rank helps quantify the exact extent of identifiability in a network. We also develop a quadratic time algorithm to compute a set of cycles/paths that achieves the maximum rank.
Resumo:
In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.
Resumo:
In this paper, a C-0 interior penalty method has been proposed and analyzed for distributed optimal control problems governed by the biharmonic operator. The state and adjoint variables are discretized using continuous piecewise quadratic finite elements while the control variable is discretized using piecewise constant approximations. A priori and a posteriori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions. Numerical results justify the theoretical results obtained. The a posteriori error estimators are useful in adaptive finite element approximation and the numerical results indicate that the sharp error estimators work efficiently in guiding the mesh refinement. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents the study of wave propagation in quasicrystals. Our interest is in the computation of the wavenumber (k(n)) and group speed (c(g)) of the phonon and phason displacement modes of one, two, and three dimensional quasicrystals. These wave parameter expressions are derived and computed using the elasto-hydrodynamic equations for quasicrystals. For the computation of the wavenumber and group speeds, we use Fourier transform approximation of the phonon and the phason displacement modes. The characteristic equations obtained are a polynomial equation of the wavenumber (k(n)), with frequency as a parameter. The corresponding group speeds (c(g)) for different frequencies are then computed from the wavenumber k(n). The variation of wavenumber and group speeds with frequency is plotted for the 1-D quasicrystal, 2-D decagonal Al-Ni-Co quasicrystals, and 3-D icosahedral Al-Pd-Mn and Zn-Mg-Sc quasicrystals. From the wavenumber and group speeds plots, we obtain the cut-off frequencies for different spatial wavenumber eta(m). The results show that for 1-D, 2-D, and 3-D quasicrystals, the phonon displacement modes are non-dispersive for low values of eta(m) and becomes dispersive for increasing values of eta(m). The cut-off frequencies are not observed for very low values of eta(m), whereas the cut-off frequency starts to appear with increasing eta(m). The group speeds of the phason displacement modes are orders of magnitude lower than that of the phonon displacement modes, showing that the phason modes do not propagate, and they are essentially the diffusive modes. The group speeds of the phason modes are also not influenced by eta(m). The group speeds for the 2-D quasicrystal at 35 kHz is also simulated numerically using Galerkin spectral finite element methods in frequency domain and is compared with the results obtained using wave propagation analysis. The effect of the phonon and phason elastic constants on the group speeds is studied using 3-D icosahedral Al-Pd-Mn and Zn-Mg-Sc quasicrystals. It is also shown that the phason elastic constants and the coupling coefficient do not affect the group speeds of the phonon displacement modes. (C) 2015 AIP Publishing LLC.
Resumo:
We consider refined versions of Markov chains related to juggling introduced by Warrington. We further generalize the construction to juggling with arbitrary heights as well as infinitely many balls, which are expressed more succinctly in terms of Markov chains on integer partitions. In all cases, we give explicit product formulas for the stationary probabilities. The normalization factor in one case can be explicitly written as a homogeneous symmetric polynomial. We also refine and generalize enriched Markov chains on set partitions. Lastly, we prove that in one case, the stationary distribution is attained in bounded time.
Resumo:
Given a Boolean function , we say a triple (x, y, x + y) is a triangle in f if . A triangle-free function contains no triangle. If f differs from every triangle-free function on at least points, then f is said to be -far from triangle-free. In this work, we analyze the query complexity of testers that, with constant probability, distinguish triangle-free functions from those -far from triangle-free. Let the canonical tester for triangle-freeness denotes the algorithm that repeatedly picks x and y uniformly and independently at random from , queries f(x), f(y) and f(x + y), and checks whether f(x) = f(y) = f(x + y) = 1. Green showed that the canonical tester rejects functions -far from triangle-free with constant probability if its query complexity is a tower of 2's whose height is polynomial in . Fox later improved the height of the tower in Green's upper bound to . A trivial lower bound of on the query complexity is immediate. In this paper, we give the first non-trivial lower bound for the number of queries needed. We show that, for every small enough , there exists an integer such that for all there exists a function depending on all n variables which is -far from being triangle-free and requires queries for the canonical tester. We also show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness is at least square root of the query complexity of the corresponding canonical tester. Consequently, this means that any one-sided tester for triangle-freeness must make at least queries.
Resumo:
We study motion around a static Einstein and pure Lovelock black hole in higher dimensions. It is known that in higher dimensions bound orbits exist only for a pure Lovelock black hole in all even dimensions, D = 2N + 2, where N is the degree of Lovelock polynomial action. In particular, we compute periastron shift and light bending, and the latter is given by one of the transverse spatial components of the Riemann curvature tensor. We also consider the pseudo-Newtonian potentials and Kruskal coordinates.
Resumo:
In this paper, we present novel precoding methods for multiuser Rayleigh fading multiple-input-multiple-output (MIMO) systems when channel state information (CSI) is available at the transmitter (CSIT) but not at the receiver (CSIR). Such a scenario is relevant, for example, in time-division duplex (TDD) MIMO communications, where, due to channel reciprocity, CSIT can be directly acquired by sending a training sequence from the receiver to the transmitter(s). We propose three transmit precoding schemes that convert the fading MIMO channel into a fixed-gain additive white Gaussian noise (AWGN) channel while satisfying an average power constraint. We also extend one of the precoding schemes to the multiuser Rayleigh fading multiple-access channel (MAC), broadcast channel (BC), and interference channel (IC). The proposed schemes convert the fading MIMO channel into fixed-gain parallel AWGN channels in all three cases. Hence, they achieve an infinite diversity order, which is in sharp contrast to schemes based on perfect CSIR and no CSIT, which, at best, achieve a finite diversity order. Further, we show that a polynomial diversity order is retained, even in the presence of channel estimation errors at the transmitter. Monte Carlo simulations illustrate the bit error rate (BER) performance obtainable from the proposed precoding scheme compared with existing transmit precoding schemes.
Resumo:
In this paper, attempt is made to solve a few problems using the Polynomial Point Collocation Method (PPCM), the Radial Point Collocation Method (RPCM), Smoothed Particle Hydrodynamics (SPH), and the Finite Point Method (FPM). A few observations on the accuracy of these methods are recorded. All the simulations in this paper are three dimensional linear elastostatic simulations, without accounting for body forces.
Resumo:
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Resumo:
We study the problem of finding small s-t separators that induce graphs having certain properties. It is known that finding a minimum clique s-t separator is polynomial-time solvable (Tarjan in Discrete Math. 55:221-232, 1985), while for example the problems of finding a minimum s-t separator that induces a connected graph or forms an independent set are fixed-parameter tractable when parameterized by the size of the separator (Marx et al. in ACM Trans. Algorithms 9(4): 30, 2013). Motivated by these results, we study properties that generalize cliques, independent sets, and connected graphs, and determine the complexity of finding separators satisfying these properties. We investigate these problems also on bounded-degree graphs. Our results are as follows: Finding a minimum c-connected s-t separator is FPT for c=2 and W1]-hard for any ca parts per thousand yen3. Finding a minimum s-t separator with diameter at most d is W1]-hard for any da parts per thousand yen2. Finding a minimum r-regular s-t separator is W1]-hard for any ra parts per thousand yen1. For any decidable graph property, finding a minimum s-t separator with this property is FPT parameterized jointly by the size of the separator and the maximum degree. Finding a connected s-t separator of minimum size does not have a polynomial kernel, even when restricted to graphs of maximum degree at most 3, unless .
Resumo:
We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs.
Resumo:
Event-triggered sampling (ETS) is a new approach towards efficient signal analysis. The goal of ETS need not be only signal reconstruction, but also direct estimation of desired information in the signal by skillful design of event. We show a promise of ETS approach towards better analysis of oscillatory non-stationary signals modeled by a time-varying sinusoid, when compared to existing uniform Nyquist-rate sampling based signal processing. We examine samples drawn using ETS, with events as zero-crossing (ZC), level-crossing (LC), and extrema, for additive in-band noise and jitter in detection instant. We find that extrema samples are robust, and also facilitate instantaneous amplitude (IA), and instantaneous frequency (IF) estimation in a time-varying sinusoid. The estimation is proposed solely using extrema samples, and a local polynomial regression based least-squares fitting approach. The proposed approach shows improvement, for noisy signals, over widely used analytic signal, energy separation, and ZC based approaches (which are based on uniform Nyquist-rate sampling based data-acquisition and processing). Further, extrema based ETS in general gives a sub-sampled representation (relative to Nyquistrate) of a time-varying sinusoid. For the same data-set size captured with extrema based ETS, and uniform sampling, the former gives much better IA and IF estimation. (C) 2015 Elsevier B.V. All rights reserved.