318 resultados para ferroelectric thin films
Resumo:
Thin films of SbxSe60-xS40( x= 10, 20, 30, and 40) were deposited by thermal evaporation from the prepared bulk materials on glass substrates held at room temperature. The film compositions were confirmed by using energy dispersive X-ray spectroscopy. X-ray diffraction studies revealed that all the as- deposited films have amorphous structure. The optical constants ( n, k, E-g, E-e, B-1/2) of the films were determined from optical transmittance data, in the spectral range 500-1200 nm, using the Swanepoel method. An analysis of the optical absorption spectra revealed an Urbach's tail in the low absorption region, while in the high absorption region an indirect band gap characterizes the films with different compositions. It was found that the optical band gap energy decreases as the Sb content increases. Finally, in terms of the chemical bond approach, degree of disorderness has been applied to interpret the decrease in the optical gap with increasing Sb content in SbxSe60-xS40 thin films. The changes in X-ray photo electron spectra and Raman shift in the films show compositional dependence. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.
Resumo:
We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm(2), however the kinetics remain rather different.
Resumo:
The thermally evaporated As20Sb20S60 amorphous film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra and Raman shift supports the optical changes happening in the film due to light exposure.
Resumo:
Patterned substrate growth has been a subject of much interest. In this work, characteristics of some statistical properties of a film grown on triangular and vicinal substrates using the Family model are studied. Substrate size and tilt angle are varied. It is found that the interface width and the correlation function increase as the roughness of the pattern is increased. The new scaling exponents are calculated and anomalous scaling is obtained. The transient persistence probability does not show a power law relation when the initial surface is sufficiently rough. The initial rough surface also causes multifractal behavior in the model.
Resumo:
We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (p21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 degrees C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 mu m. This indicates the suitability of the films for optical switching applications at infrared frequencies.
Resumo:
We investigated the effect of oxygen flow rate during the reactive magnetron sputtering on the compositional, structural, optical and electrical properties of HfO2 films. We also studied the influence of annealing temperature on the structural and electrical properties of optimized HfO2 films of 25 to 30 nm thick. X-ray photoelectron study reveals that the films deposited at 15 SCCM of oxygen flow rate are stoichiometric and have an optical band gap of 5.86 eV. X-ray diffraction indicates that films without oxygen flow are amorphous, and beyond an oxygen flow rate of 5 SCCM exhibit polycrystalline monoclinic structure. At an annealing temperature of 600 degrees C, tetragonal phase was observed besides the monoclinic phase. The dielectric constant of 11 and low leakage currents of 1 x 10(-7) A/cm(2) were achieved for the stoichiometric films. As-deposited films show significant frequency dispersion due to the presence of defect states at the HfO2/Si interface, and it reduces after annealing.
Resumo:
The exposure with band gap light of thermally evaporated As40Sb15Se45 amorphous film of 800 nm thickness, were found to be accompanied by optical changes. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra and Raman shift supports the optical changes happening in the film due to light exposure.
Resumo:
Mechanical properties of thin films such as residual stress and hardness are of paramount importance from the device fabrication point of view. Intrinsic stress in sputtered films can be tensile or compressive as decided by the number density and the energy of the plasma species striking the growing film. In the presence of hydrogen we analyzed the applicability of idealized stress reversal curve for amorphous silicon thin films deposited by DC, pulsed DC (PDC) and RF sputtering. We are successfully able to correlate the microstructure with the stress reversal and hardness. We observed a stress reversal from compressive to tensile with hydrogen incorporation. It was found that unlike in idealized stress reversal curve case, though the energy of plasma species is less in DC plasma, DC deposited films exhibit more compressive stress, followed by PDC and RF deposited films. A tendency towards tensile stress from compressive stress was observed at similar to 13, 18 and 23 at%H for DC, PDC and RF deposited films respectively, which is in exact agreement with the vacancy to void transition in the films. Regardless of the sputtering power mode, the hardness of a-Si:H films is found to be maximum at C-H similar to 10 at%H. Enhancement in hardness with C-H (up to C-H similar to 10 at%H) is attributed to increase of Si-H bonds. Beyond C-H similar to 10 at%H, hardness starts falling. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Cu(In,Al)Se-2 films are grown using single step electrodeposition technique. The film properties are studied by varying the deposition time from 500 to 2000 s. Peaks corresponding to elemental Se and Cu2Se phase started appearing from 1200 s of deposition. The composition is changed significantly after 1500 S. Se concentration increased from 57 to 68% with the increase in the deposition time. The Cu2Se phase is dominant in the films deposited for a duration of 2000 s and the grain size increased from 1.12 to 2.15 mu m in this film. Raman analysis confirmed the presence of Se and Cu2Se phase in C1200. In C1500 and C2000 the spectra showed prominent mode corresponding to Cu2Se. The thickness of the film increased from 0.85 to 2.3 mu m with the increase in the deposition time. All the films showed p-type conductivity and resistivity reduced with increased thickness. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
8mol% yttria-stabilized zirconia (8YSZ) is an extensively studied solid electrolyte. But there is no consistency in the reported ionic conductivity values of 8YSZ thin films. Interfacial segregation in YSZ thin films can affect its ionic conductivity by locally altering the surface chemistry. This article presents the effects of annealing temperature and film thickness on free surface yttria segregation behavior in 8YSZ thin film by Angle Resolved XPS and its influence on the ionic conductivity of sputtered 8YSZ thin films. Surface yttria concentration of about 32, 20, and 9mol% have been found in 40nm 8YSZ films annealed at 1273, 1173, and 1073K, respectively. Yttria segregation is found to increase with increase in annealing temperature and film thickness. Ionic conductivities of 0.23, 0.16, and 0.08Scm(-1) are observed at 923K for 40nm 8YSZ films annealed at 1073, 1173, and 1273K, respectively. The decrease in conductivity with increase in annealing temperature is attributed to the increased yttria segregation with annealing. Neither segregation nor film thickness is found to affect the activation energy of oxygen ion conduction. Target purity is found to play a key role in determining free surface yttria segregation in 8YSZ thin films.
Resumo:
Amorphous Silicon Germanium (a-SiGe) thin films of 500 nm thickness are deposited on silicon substrates using Plasma Enhanced Chemical Vapour Deposition (PECVD). To obtain polycrystalline nature of films, thermal annealing is done at various temperature (450-600 degrees C) and time (1-10 h). The surface morphology of the pre- and post-annealed films is investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystallographic structure of the film is obtained by X-ray diffraction method. Raman spectroscopy is carried out to quantify the Ge concentration and the degree of strain relaxation in the film. Nano-indentation is performed to obtain the mechanical properties of the film. It is found that annealing reduces the surface roughness of the film and increases the Ge concentration in the film. The grain size of the film increases with increase in annealing temperature. The grain size is found to decrease with increase in annealing time up to 5 h and then increased. The results show that 550 degrees C for 5 h is the critical annealing condition for variation of structural and mechanical properties of the film. Recrystallization starts at this condition and results in finer grains. An increase in hardness value of 7-8 GPa has been observed. Grain growth occurs above this critical annealing condition and degrades the mechanical properties of the film. The strain in the film is only relaxed to about 55% even for 10 h of annealing at 600 degrees C. Transmission Electron Microscopy (TEM) observations show that the strain relaxation occurs by forming misfit dislocations and these dislocations are confined to the SiGe/Si interface. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2 `' Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
Resumo:
Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 degrees C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)(3)), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)(4)), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.