336 resultados para elastomer nano composites
Resumo:
In this study, the effects of nanoscale ZnO reinforcement on the room temperature tensile and compressive response of monolithic Mg were studied. Experimental observations indicated strength properties improvement due to nanoscale ZnO addition. A maximum increment in tensile yield strength by similar to 55% and compressive yield strength by 90% (with reduced tension-compression asymmetry) was achieved when 0.8 vol.% ZnO nanoparticles were added to Mg. While the fracture strain values under tensile loads were found to increase significantly (by similar to 95%, in case of Mg-0.48ZnO), it remained largely unaffected under compressive loads. The microstructural characteristics studied in order to comprehend the mechanical response showed significant grain refinement due to grain boundary pinning effect of nano-ZnO particles which resulted in strengthening of Mg. Texture analysis using X-ray and EBSD methods indicated weakening of basal fibre texture in Mg/ZnO nanocomposites which contributed towards the reduction in tension-compression yield asymmetry and enhancement in tensile ductility when compared to pure Mg. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Retaining the morphology of gallium oxide nanostructures during structural transformations or after doping with lanthanide ions is not facile. Here we report on the sonochemical synthesis of nearly monodisperse similar to 550 nm long nano-spindles of undoped and La-doped alpha-GaOOH. The transformation of as-prepared undoped and La-doped alpha-GaOOH powders into the corresponding undoped and La-doped Ga2O3 phases (alpha and beta) was achieved by carrying out controlled annealing at elevated temperatures under optimized conditions. The formation of gallium oxide nano-spindles is explained by invoking the phenomenon of oriented attachment, as amply supported by electron microscopy. Interestingly, the morphology of the gallium oxide nano-spindles remained conserved even after doping them with more than 1.4 at% of La3+ ions. Such robust structural stability could be attributed to the oriented attachment-type growth observed in the nano-spindles. The as-prepared samples and the corresponding annealed ones were thoroughly characterized by powder X-ray diffraction (PXRD), electron microscopy (SEM, TEM, and STEM-EDS) and X-ray photoelectron spectroscopy (XPS). Finally, photoluminescence from the single-crystalline undoped and La-doped beta-Ga2O3 was explored.
Resumo:
Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.
Resumo:
There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT>PCL/ST>PCL/BT>PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.
Resumo:
Strong magnetoelectric (ME) interaction was exhibited at both dc and microwave frequencies in a lead-free multiferroic particulate composites of Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) multiferroic, which were prepared by sol-gel route. The room temperature permeability measurements were carried out in the frequency range of 1 MHz-1 GHz. A systematic study of structural, magnetic and ME properties were undertaken. The room temperature ferromagnetic resonance (FMR) was studied. Strong ME coupling is demonstrated in 70NBT-30MFO composite by an electrostatically tunable FMR field shift up to 428 Oe (at E = 4 kV/cm), which increases to a large value of 640 Oe at E = 8 kV/cm. Furthermore, these lead-free multiferroic composites exhibiting electrostatically induced magnetic resonance field at microwave frequencies provide great opportunities for electric field tunable microwave devices.
Resumo:
The retention of the desired combination of mechanical/tribological properties in ultrafine grained materials presents important challenges in the field of bulk metallic composites. In order to address this aspect, the present work demonstrates how one can achieve a good combination of hardness and wear resistance in Cu-Pb-TiB2 composites, consolidated by spark plasma sintering at low temperatures ( < 500 degrees C). Transmission electron microscope (TEM) studies reveal ultrafine grains of Cu (100-400 nm) with coarser TiB2 particles (1-2 mu m) along with fine scale Pb dispersoid at triple junctions or at the grain boundaries of Cu. Importantly, a high hardness of around 2.2 GPa and relative density of close to 90% relative density (rho(theo)) have been achieved for Cu-15 wt% TiB2-10 wt% Pb composite. Such property theo, combination has never been reported for any Cu-based nanocomposite, by conventional processing route. In reference to the tribological performance, fretting wear tests were conducted on the sintered nanocomposites and a good combination of steady state COF (0.6-0.7) and wear rate (10-4 mm(3)/N m) were measured. An inverse relationship between wear rate and hardness was recorded and this commensurates well with Archard's relationship of abrasive wear. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris, (Cu, Fe, Ti)(x)O-y as confirmed from subsurface imaging using focused ion beam microscopy has been identified as the key factors for the low wear rate of these composites. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.
Resumo:
The present article reports a facile method for preparing the vertically-aligned 1D arrays of a new type of type II n-n TiO2/ZnO core/shell nano-heterostructures by growing the nano-shell of ZnO on the electrochemically fabricated TiO2 nanotubes core for visible light driven photoelectrochemical applications. The strong interfacial interaction at the type II heterojunction leads to an effective interfacial charge separation and charge transport. The presence of various defects such as surface states, interface states and other defects in the nano-heterostructure enable it for improved visible light photoelectrochemical performance. The presence of such defects has also been confirmed by the UV-vis absorption, cathodoluminescence, and crystallographic studies. The TiO2/ZnO core/shell nano-heterostructures exhibit strong green luminescence due to the defect transitions. The TiO2/ZnO core/shell nano-heterostructures photo-electrode show significant enhancement of visible light absorption and it provides a photocurrent density of 0.7 mA cm(-2) at 1 V vs. Ag/AgCl, which is almost 2.7 times that of the TiO2/ZnO core/shell nano-heterostructures under dark conditions. The electrochemical impedance spectroscopy results demonstrate that the substantially improved photoelectrochemical and photo-switching performance of the nano-heterostructures photo-anode is because of the enhancement of interfacial charge transfer and the increase in the charge carrier density caused by the incorporation of the ZnO nano-shell on TiO2 nanotube core.
Resumo:
We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2 -configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. Microsc. Res. Tech. 78:1-7, 2015. (c) 2014 Wiley Periodicals, Inc.
Resumo:
We present the experimental results of temperature dependent magnetoresistance (MR) and the magnetization studies of iron encapsulated multiwall carbon nanotube (MWCNT)/polyvinyl chloride (PVC) composites with different wt% of MWCNTs. Transmission electron microscopy characterization shows that MWCNTs are encapsulated with rod-shaped iron nanoparticles of aspect ratio of similar to 3. The MR behavior of 1.9 wt% MWCNT/PVC sample shows dominance of forward scattering and wave function shrinkage whereas, weak localization and electron-electron interactions explain the MR data of higher wt% samples (9.1, 16.6 and 44.4 wt%). The composites of 4.7 and 9.1 wt% exhibit ferromagnetic behavior at all temperatures with room temperature coercivities of similar to 1036 and 628 Oe, respectively. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (M-s) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles
Resumo:
The drying of sessile, nano-silica laden water droplet is studied under ambient conditions, in the absence of any convection. The drying process can be divided into two distinct regimes. During regime 1, the outer edge of the droplet remains pinned and particles agglomerate at the droplet periphery similar to the traditional coffee ring. However in regime 2, with further evaporation, both the liquid contact line and the agglomeration front starts moving radially inwards from the initial contact edge. The contact between the liquid and the agglomerate is maintained throughout regime 2 and the vaporisation driven liquid edge recession essentially drives the inward growth of the particle deposition. Fast kinetics of particle aggregation results in rapid growth of this agglomeration front as seen from the experiments. A theoretical formulation involving a simplistic model of the agglomeration front growth based on particle mass balance has been proposed. (C) 2014 Elsevier Ltd. All rights reserved,
Resumo:
Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2-CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol-gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2-10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping. Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2-CNT nanocomposite and TEM image of the TiO2-CNT nanocomposite.
Resumo:
Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se55Te25Ge20, Se55Te25Ge20 + 0.025% multi walled carbon nano tubes and Se55Te25Ge20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se55Te25Ge20) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.