496 resultados para dome structure
Resumo:
The iodide-containing layered double hydroxides (LDHs) of Mg and Zn with AI crystallize by the inclusion of extensive positional disorder of I- ions in the interlayer region. I- ion given its poor charge to size ratio can neither screen effectively the positive charge nor participate in H-bonding with the metal hydroxide layers. Thereby the I- ions are not stabilized in sites close to the seat of positive charge of the metal hydroxide layers (6c), nor in sites that facilitate H-bonding (3b or 18h). On the other hand, OH- from water can do both and effectively displaces I- from the interlayer. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Sesbania mosaic virus (SeMV) is a ss-RNA (4149 nt) plant sobemovirus isolated from farmer's field around Tirupathi, Andhra Pradesh. The viral capsid (30 nm diameter) consists of 180 copies of protein subunits (MW 29 kDa) organized with icosahedral symmetry. In order to understand the mechanism of assembly of SeMV, a large number of deletion and substitution mutants of the coat protein (CP) were constructed. Recombinant SeMV CP (rCP) as well as the N-terminal rCP deletion mutant Delta N22 were found to assemble in E. coli into virus-like particles (VLPs). Delta N36 and Delta N65 mostly formed smaller particles consisting of 60 protein subunits. Although particlem assembly was not affected due to the substitution of aspartates (D14 and D149) that coordinate calcium ions by asparagines, the stability of the resulting capsids was drastically reduced. Deletion of residues forming a characteristic beta-annulus at the icosahedral 3-folds did not affect the assembly of VLPs. Mutation of a single tryptophan, which occurs near the icosahedral fivefold axis to glutamate or lysine, resulted in the disruption of the capsid leading to soluble dimers that resembled the quasi-dimer structure of the native virus. Replacement of positively charged residues in the amino terminal segment of CP resulted in the formation of empty shells. Based on these observations, a plausible mechanism of assembly is proposed.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
Nuclear Overhauser effects (NOE) and circular dichroism (CD) techniques have been used to probe @-turn conformations in acyclic and cyclic peptides containingPro-Xsequences. The model peptides studied are of the type Piv-Pro-X-NHMe (X = Aib, D-Ala, Gly, Val, and Leu) and Boc-Cys-Pro-X-C s NHMe (X = Aib, L-Ala, D-Ala, Gly, and Leu). In the acyclic series, observation of NOES between Pro C"H and X-NH, together with solvent and temperature dependence of NH chemical shifts, establishes a 4 - 1 hydrogen bond stabilized type I1 @-turn in the Gly, D-Ala, and Aib peptides, in CDC13 and (CD3)2S0. A positive n-r* CD band at -225-230 nm appears to be characteristic of this structure. For the acyclic Pro-Leu peptide the observation of NOE's for both Pro and Leu C"H resonances on saturation of Leu NH is compatible with a type V bend or consecutive y-turn conformation. In the cyclic disulfide series the Pro-Aib and Pro-D-Ala peptides favor type I1 @-turns, whereas all other peptides adopt type I (111) conformations. All the cyclic disulfides exhibit an intense negative CD band at -228-230 nm. The results suggest thatgeneralcorrelations between CD spectral type and specific 0-turn conformations may not be obtained. Evidence for solvent-dependent structural changes in the Pro-Aib sequence in both cyclic and acyclic peptides is presented.
Resumo:
This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.
Resumo:
The conformationally restricted CHO-L-Met-Xxx-L-Phe-OY (where Xxx = Aib, Ac3c, Ac5c, Ac6c, and Ac7c; Y = H, Me) tripeptides, analogs of the chemoattractant CHO-L-Met-L-Leu-L-Phe-OH, have been synthesized in solution by classical methods and fully characterized. Compounds were compared to determine the combined effect of backbone conformational preferences and side-chain bulkiness on the relation of three-dimensional structure to biological activity. Each peptide was tested for its ability to induce granule enzyme secretion from rabbit peritoneal polymorphonuclear leukocytes. In parallel, a conformational analysis on the CHO-blocked peptide and their tertbutyloxycarbonylated synthetic precursors was performed in the crystal state and in solution using X-ray diffraction, infrared absorption, and 1H nuclear magnetic resonance. The biological and conformational data are discussed in relation to the proposed model of the chemotactic peptide receptor of rabbit neutrophils.
Resumo:
Two seven-residue helical segments, Val-Ala-Leu-Aib-Val-Ala-Leu, were linked synthetically with an epsilon-aminocaproic acid (Acp) linker with the intention of making a stable antiparallel helix-helix motif. The crystal structure of the linked peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Acp-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (1) shows the two helices displaced laterally from each other by the linker, but the linker has not folded the molecule into a close-packed antiparallel conformation. Two strong intermolecular NH...O = C hydrogen bonds are formed between the top of the lower helix of one molecule and the bottom of the upper helix in a laterally adjacent molecule to give the appearance of an extended single helix. The composite peptide with Boc and OMe end groups, C76H137N15O18.H2O, crystallize in space group P2(1) with a = 8.802 (1) angstrom, b = 20.409 (4) angstrom, c = 26.315 (3) angstrom, and beta = 90.72 (1)degrees; overall agreement R = 7.86% for 5030 observed reflections (\F(o)\ > 3-sigma(F)); resolution = 0.93 angstrom. Limited evidence for a more compact conformation in solution consistent with an antiparallel helix arrangement is obtained by comparison of the HPLC retention times and CD spectra of peptide 1 with well-characterized continuous helices of similar length and sequence.
Resumo:
Theoretical studies using density functional theory are carried out to understand the electronic structure and bonding and electronic properties of elemental beta-rhombohedral boron. The calculated band structure of ideal beta-rhombohedral boron (B-105) shows valence electron deficiency and depicts metallic behavior. This is in contrast to the experimental result that it is a semiconductor. To understand this ambiguity we discuss the electronic structure and bonding of this allotrope with cluster fragment approach using our recently proposed mno rule. This helps us to comprehend in greater detail the structure of B-105 and materials which are closely related to beta-rhombohedral boron. The molecular structures B12H12-2, B28H21+1, BeB27H21, LiB27H21-1, CB27H21+2, B57H36+3, Be3B54H36, and Li2CB54H36, and corresponding solids Li8Be3B102 and Li10CB102 are arrived at using these ideas and studied using first principles density functional theory calculations.
Resumo:
Crystals of Eu-(Gly-Gly-Gly).(H2O)5.(ClO4)3 are triclinic, spacegroup P1BAR with a = 9.123 (2), b = 11.185 (5), c = 11.426 (2) angstrom; alpha = 90.79 (2), beta = 98.08 (1), gamma = 98.57 (2)-degrees; Z = 2. The europium cation is surrounded by four oxygens from three different peptide units and four oxygens from water molecules. The geometry around the metal is a distorted bi-capped trigonal prism. The peptide backbone conformation in this complex is compared with those in the free peptide and in various metal complexes. Considerable differences are observed between Eu(III) and Ca(II) complexes of triglycine. (C) Munksgaard 1994.
Resumo:
The dodecapeptide Boc-(Ala-Leu-Aib)(4)-OMe crystallized with two independent helical molecules in a triclinic cell. The two molecules are very similar in conformation, with a 3(10)-helix turn at the N-terminus followed by an alpha-helix, except for an elongated N(7)...O(3) distance in both molecules. All the helices in the crystal pack in a parallel motif. Eleven water sites have been found in the head-to-tail region between the apolar helices that participate in peptide-water hydrogen bonds and a network of water-water hydrogen bonds. The crystal parameters are as follows: 2(C58H104N12O15)+ca. 10H(2)O, space group P1 with a = 12.946(2), b = 17.321(3), c = 20.465(4) Angstrom, alpha = 103.12(2), beta = 105.63(2), gamma = 107.50(2)degrees, Z = 2, R = 10.9% for 5152 data observed > 3 sigma(F), resolution 1.0 Angstrom. In contrast to the shorter sequences [Karle et al. (1988)Proc. Natl. Acad. Sci. USA 85, 299-303] and Boc-(Ala-Leu-Aib)(2)-OMe [Karle et al. (1989) Biopolymers 28, 773-781], no insertion of a water molecule into the helix is observed. However, the elongated N---O distance between Ala(7) NH and Aib(3) CO in both molecules (molecule A, 3.40 Angstrom; molecule B, 3.42 Angstrom) is indicative of an incipient break in the helices. (C) Munksgaard 1994.
Resumo:
Background: Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 Angstrom resolution. Results: The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences, In most TIMs the residue at position 183 is a glutamate but in PtTIM it is a leucine, This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM.
Resumo:
The peptide Boc-Gly-Dpg-Gly-Gly-Dpg-Gly-NHMe (1) has been synthesized to examine the conformational preferences of Dpg residues in the context of a poor helix promoting sequence. Single crystals of 1 were obtained in the space group P21/c with a = 13.716(2) Å, b = 12.960(2) Å, c = 22.266(4) Å, and β = 98.05(1)°; R = 6.3% for 3660 data with |Fo| > 4σ. The molecular conformation in crystals revealed that the Gly(1)-Dpg(2) segment adopts φ, ψ values distorted from those expected for an ideal type II‘ β-turn (φGly(1) = +72.0°, ψGly(1) = −166.0°; φDpg(2) = −54.0°, ψDpg(2) = −46.0°) with an inserted water molecule between Boc-CO and Gly(3)NH. The Gly(3)-Gly(4) segment adopts φ, ψ values which lie broadly in the right handed helical region (φGly(3) = −78.0°, ψGly(3) = −9.0°; φGly(4) = −80.0°, ψGly(4) = −18.0°). There is a chiral reversal at Dpg(5) which takes up φ, ψ values in the left handed helical region. The Dpg(5)-Gly(6) segment closely resembles an ideal type I‘ β-turn (φDpg(5) = +56.0°, ψDpg(5) = +32.0°; φGly(6) = +85.0°, ψGly(6) = −3.0°). Molecules of both chiral senses are found in the centrosymmetric crystal. The C-terminus forms a hydrated Schellman motif, with water insertion into the potential 6 → 1 hydrogen bond between Gly(1)CO and Gly(6)NH. NMR studies in CDCl3 suggest substantial retention of the multiple turn conformation observed in crystals. In solution the observed NOEs support local helical conformation at the two Dpg residues.
Resumo:
The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form β-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: Dab-Gaba-Lys-Pro-Leu-Gly-Lys-Val-Xxx-Yyy-Glu-Val-Ala-Ala-Cys-Lys-NH2 ï EDANS Xxx-Yyy: Peptide 1=DPro-LPro, Peptide 2=DPro-Gly, Peptide 3=Leu-Ala Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that β-turn formation acts as a deterrent to proteolytic cleavage.
Resumo:
The use of stereochemically constrained amino acids permits the design of short peptides as models for protein secondary structures. Amino acid residues that are restrained to a limited range of backbone torsion angles (ϕ-ψ) may be used as folding nuclei in the design of helices and β-hairpins. α-Amino-isobutyric acid (Aib) and related Cαα dialkylated residues are strong promoters of helix formation, as exemplified by a large body of experimentally determined structures of helical peptides. DPro-Xxx sequences strongly favor type II’ turn conformations, which serve to nucleate registered β-hairpin formation. Appropriately positioned DPro-Xxx segments may be used to nucleate the formation of multistranded antiparallel β-sheet structures. Mixed (α/β) secondary structures can be generated by linking rigid modules of helices and β-hairpins. The approach of using stereochemically constrained residues promotes folding by limiting the local structural space at specific residues. Several aspects of secondary structure design are outlined in this chapter, along with commonly used methods of spectroscopic characterization.
Resumo:
The first examples of stable spirodiazaselenurane and spirodiazatellurane were synthesized by oxidative spirocyclization of the corresponding diaryl selenide and telluride and were structurally characterized. X-ray crystal structures of the spirodiazaselenurane and spirodiazatellurane suggest that the structures are distorted trigonal bipyramidal (TBP) with the electronegative nitrogen atoms occupying the apical positions and two carbon atoms and the lone pair of Se/Te occupying the equatorial positions. Interestingly, the spirodiazatellurane underwent spontaneous chiral resolution during crystallization, and the absolute configurations of its enantiomers were confirmed by single-crystal X-ray analyses. A detailed mechanistic study indicates that the cyclization to spirodiazaselenurane and spirodiazatellurane occurs via selenoxide and telluroxide intermediates. The chalcogenoxides cyclize to the corresponding spiro compounds in a stepwise manner via the involvement of hydroxyl chalcogenurane intermediates, and the activation energy for them spirocyclization reaction decreases in the order S > Se > Te. In addition to the synthesis, characterization, and mechanism of cyclization, the glutathione peroxidase (GPx) mimetic activity of the newly synthesized compounds was evaluated. These studies suggest that the tellurium compounds are more effective as GPx mimics than their selenium counterparts due to the fast oxidation of the tellurium center in the presence of peroxide and the involvement of an efficient redox cycle between the telluride and telluroxide intermediate.