320 resultados para Simulation results


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider spatial modulation (SM) operating in a frequency-selective single-carrier (SC) communication scenario and propose zero-padding instead of the cyclic-prefix considered in the existing literature. We show that the zero-padded single-carrier (ZP-SC) SM system offers full multipath diversity under maximum-likelihood (ML) detection, unlike the cyclic-prefix based SM system. Furthermore, we show that the order of ML detection complexity in our proposed ZP-SC SM system is independent of the frame length and depends only on the number of multipath links between the transmitter and the receiver. Thus, we show that the zero-padding applied in the SC SM system has two advantages over the cyclic prefix: 1) achieves full multipath diversity, and 2) imposes a relatively low ML detection complexity. Furthermore, we extend the partial interference cancellation receiver (PIC-R) proposed by Guo and Xia for the detection of space-time block codes (STBCs) in order to convert the ZP-SC system into a set of narrowband subsystems experiencing flat-fading. We show that full rank STBC transmissions over these subsystems achieves full transmit, receive as well as multipath diversity for the PIC-R. Furthermore, we show that the ZP-SC SM system achieves receive and multipath diversity for the PIC-R at a detection complexity order which is the same as that of the SM system in flat-fading scenario. Our simulation results demonstrate that the symbol error ratio performance of the proposed linear receiver for the ZP-SC SM system is significantly better than that of the SM in cyclic prefix based orthogonal frequency division multiplexing as well as of the SM in the cyclic-prefixed and zero-padded single carrier systems relying on zero-forcing/minimum mean-squared error equalizer based receivers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this letter, we quantify the transmit diversity order of the SM system operating in a closed-loop scenario. Specifically, the SM system relying on Euclidean distance based antenna subset selection (EDAS) is considered and the achievable diversity gain is evaluated. Furthermore, the resultant trade-off between the achievable diversity gain and switching gain is studied. Simulation results confirm our theoretical results. Specifically, at a symbol error rate of about 10(-4) the signal-to-noise ratio gain achieved by EDAS is about 7 dB in case of 16-QAM and about 5 dB in case of 64-QAM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat exchanger design plays a significant role in the performance of solid state hydrogen storage device. In the present study, a cylindrical hydrogen storage device with an embedded annular heat exchanger tube with radial circular copper fins, is considered. A 3-D mathematical model of the storage device is developed to investigate the sorption performance of metal hydride (MH). A prototype of the device is fabricated for 1 kg of MH alloy, LaNi5, and tested at constant supply pressure of hydrogen, validating the simulation results. Absorption characteristics of storage device have been examined by varying different operating parameters such as hydrogen supply pressure and cooling fluid temperature and velocity. Absorption process is completed in 18 min when these parameters are 15 bar, 298 K and 1 m/s respectively. A study of geometric parameters of copper fins (such as perforation, number and thickness of fin) has been carried out to investigate their effects on absorption process. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multicast in wireless sensor networks (WSNs) is an efficient way to spread the same data to multiple sensor nodes. It becomes more effective due to the broadcast nature of wireless link, where a message transmitted from one source is inherently received by all one-hop receivers, and therefore, there is no need to transmit the message one by one. Reliable multicast in WSNs is desirable for critical tasks like code updation and query based data collection. The erroneous nature of wireless medium coupled with limited resource of sensor nodes, makes the design of reliable multicast protocol a challenging task. In this work, we propose a time division multiple access (TDMA) based energy aware media access and control (TEA-MAC) protocol for reliable multicast in WSNs. The TDMA eliminates collisions, overhearing and idle listening, which are the main sources of reliability degradation and energy consumption. Furthermore, the proposed protocol is parametric in the sense that it can be used to trade-off reliability with energy and delay as per the requirement of the underlying applications. The performance of TEA-MAC has been evaluated by simulating it using Castalia network simulator. Simulation results show that TEA-MAC is able to considerably improve the performance of multicast communication in WSNs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a strategy for controlling a group of agents to achieve positional consensus is presented. The problem is constrained by the requirement that every agent must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming (LP) formulation that is computationally less intensive than earlier proposed methods. Moreover, a random perturbation input in the control command that helps the agents to come close to each other even for a large number of agents, which was not possible with an existing strategy in the literature, is introduced. The method is extended to achieve positional consensus at a prespecified location. The effectiveness of the approach is illustrated through simulation results. A comparison between the LP approach and the existing second-order cone programming-based approach is also presented. The algorithm was successfully implemented on a robotic platform with three robots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growing number of applications and processing units in modern Multiprocessor Systems-on-Chips (MPSoCs) come along with reduced time to market. Different IP cores can come from different vendors, and their trust levels are also different, but typically they use Network-on-Chip (NoC) as their communication infrastructure. An MPSoC can have multiple Trusted Execution Environments (TEEs). Apart from performance, power, and area research in the field of MPSoC, robust and secure system design is also gaining importance in the research community. To build a secure system, the designer must know beforehand all kinds of attack possibilities for the respective system (MPSoC). In this paper we survey the possible attack scenarios on present-day MPSoCs and investigate a new attack scenario, i.e., router attack targeted toward NoC architecture. We show the validity of this attack by analyzing different present-day NoC architectures and show that they are all vulnerable to this type of attack. By launching a router attack, an attacker can control the whole chip very easily, which makes it a very serious issue. Both routing tables and routing logic-based routers are vulnerable to such attacks. In this paper, we address attacks on routing tables. We propose different monitoring-based countermeasures against routing table-based router attack in an MPSoC having multiple TEEs. Synthesis results show that proposed countermeasures, viz. Runtime-monitor, Restart-monitor, Intermediate manager, and Auditor, occupy areas that are 26.6, 22, 0.2, and 12.2 % of a routing table-based router area. Apart from these, we propose Ejection address checker and Local monitoring module inside a router that cause 3.4 and 10.6 % increase of a router area, respectively. Simulation results are also given, which shows effectiveness of proposed monitoring-based countermeasures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time division multiple access (TDMA) based channel access mechanisms perform better than the contention based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). Most of the existing distributed TDMA scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. In this paper, we propose a novel scheme for TDMA scheduling in WSNs, which can generate a compact schedule similar to static scheduling algorithms, while its runtime performance can be matched with those of dynamic scheduling algorithms. Furthermore, the proposed distributed TDMA scheduling algorithm has the capability to trade-off schedule length with the time required to generate the schedule. This would allow the developers of WSNs, to tune the performance, as per the requirement of prevalent WSN applications, and the requirement to perform re-scheduling. Finally, the proposed TDMA scheduling is fault-tolerant to packet loss due to erroneous wireless channel. The algorithm has been simulated using the Castalia simulator to compare its performance with those of others in terms of generated schedule length and the time required to generate the TDMA schedule. Simulation results show that the proposed algorithm generates a compact schedule in a very less time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We establish zero-crossing rate (ZCR) relations between the input and the subbands of a maximally decimated M-channel power complementary analysis filterbank when the input is a stationary Gaussian process. The ZCR at lag is defined as the number of sign changes between the samples of a sequence and its 1-sample shifted version, normalized by the sequence length. We derive the relationship between the ZCR of the Gaussian process at lags that are integer multiples of Al and the subband ZCRs. Based on this result, we propose a robust iterative autocorrelation estimator for a signal consisting of a sum of sinusoids of fixed amplitudes and uniformly distributed random phases. Simulation results show that the performance of the proposed estimator is better than the sample autocorrelation over the SNR range of -6 to 15 dB. Validation on a segment of a trumpet signal showed similar performance gains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25 degrees having an average inter-molecular separation of similar to 5 angstrom. Interestingly, we find an overall tilt angle of 43 degrees between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column. (C) 2015 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electromagnetic field produced by a lightning strike to ground causes significant induction to tall objects in the vicinity. The frequency of occurrence of such nearby ground strikes can be higher than the number of direct strikes. Therefore, a complete knowledge on these induced currents is of practical relevance. However, limited efforts towards the characterisation of such induced currents in tall down-conductors could be seen in the literature. Due to the intensification of the background field caused by the descending stepped leader, tall towers/down-conductors can launch upward leaders of significant length. The nonlinearity in the conductance of upward leader and the surrounding corona sheath can alter the characteristics of the induced currents. Preliminary aspects of this phenomenon have been studied by the author previously and the present work aims to perform a detailed investigation on the role of upward leaders in modifying the characteristics of the induced currents. A consistent model for the upward leader, which covers all the essential electrical aspects of the phenomena, is employed. A first order arc model for representing the conductance of upward leader and a field dependant quadratic conductivity model for the corona sheath is employed. The initial gradient in the upward leader and the field produced by the return stroke forms the excitation. The dynamic electromagnetic response is determined by solving the wave equation using thin-wire time-domain formulation. Simulations are carried out initially to ascertain the role of individual parameters, including the length of the upward leader. Based on the simulation results, it is shown that the upward leader enhances the induced current, and when significant in length, can alter the waveshape of induced current from bipolar oscillatory to unipolar. The duration of the induced current is governed by the length of upward leader, which in turn is dependant on the return stroke current and the effective length of the down-conductor. If the current during the upward leader developmental phase is considered along with that after the stroke termination to ground, it would present a bipolar current pulse. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first objective of this paper is to show that a single-stage adsorption based cooling-cum-desalination system cannot be used if air cooled heat rejection is used under tropical conditions. This objective is achieved by operating a silica gel + water adsorption chiller first in a single-stage mode and then in a 2-stage mode with 2 beds/stage in each case. The second objective is to improve upon the simulation results obtained earlier by way of empirically describing the thermal wave phenomena during switching of operation of beds between adsorption and desorption and vice versa. Performance indicators, namely, cooling capacity, coefficient of performance and desalinated water output are extracted for various evaporator pressures and half cycle times. The improved simulation model is found to interpret experimental results more closely than the earlier one. Reasons for decline in performance indicators between theoretical and actual scenarios are appraised. (C) 2015 Elsevier Ltd and IIR. All rights reserved.