364 resultados para Rod influence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bonding is the most important non-covalent interaction utilised in building supramolecular assemblies and is preferred often as a means of construction of molecular, oligomeric as well as polymeric materials that show liquid crystalline properties. In this work, a pyridine based nematogenic acceptor has been synthesized and mixed with non-mesogenic 4-methoxy benzoic acid to get a hydrogen bonded mesogen. The existence of hydrogen bonding between the pyridyl unit and the carboxylic acid was established using FT-IR spectroscopy from the observation of characteristic stretching vibrations of unionized type at 2425 and 1927 cm(-1). The mesogenic acceptor and the complex have been investigated using C-13 NMR in solution, solid and liquid crystalline states. Together with the 2D separated local field NMR experiments, the studies confirm the molecular structure in the mesophase and yield the local orientational order parameters. It is observed that the insertion of 4-methoxy benzoic acid not only enhances the mesophase stability but also induces a smectic phase due to an increase in the core length of the hydrogen bonded mesogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of shoulder diameter and plunge depth on the formability of friction stir welded sheets. The base material used for welding and forming was AA6061-T6. Formability evaluation was performed through limiting dome height tests. The forming limit curve, FLC (only in the stretching region), thickness distribution, and strain hardening exponent of the weld region were monitored during formability studies. It is found from the work that the forming limit of friction stir welded sheets is better than unwelded sheets. In general, with an increase in shoulder diameter and plunge depth, the forming limit is found to improve considerably. With a decrease in thickness gradient severity and an increase in strain hardening exponent (n) of the weld region, the forming limit is found to increase. The increase in n value of the weld region is believed to occur because of the reduction in dislocation density. The maximum thickness difference is higher in the retreating side, rather than in the advancing side, of the weld. This is due to the differential straining and hardness levels attained by both sides during friction stir welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports analytical modeling, simulation and experimental validation for switching and release times of an electrostatically actuated micromachined switch. Presented work is an extension of our earlier work [1] that analytically argued, and numerically and experimentally demonstrated, why pull-in time is larger that pull-up time when the actuation voltage is less than twice of the pull-in voltage. In this paper, switching dynamics is investigated under the influence of squeeze-film damping. Tests were performed on SOI (silicon-on-insulator) based parallel beams structures.Typical voltage requirement for actuation is in the range of 10-30 V. All the experiments were performed in normal atmospheric pressure. Measurement results confirm that the quality factor Q has appreciable effect on the release time compared to the switching time. The quality factor Q is extracted from the response measurement and compared with the ANSYS simulation result. In addition, the dynamic pull-in effect has also been studied and reported in this paper. A contribution of this work includes the effect of various phenomena such as squeeze-film damping, dynamic pull-in, and frequency pull-in effects on the switching dynamics of a MEMS switch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of strain on the mechanical properties and deformation kinetic parameters of nanotwinned (at) copper is investigated by a series of nanoindentation experiments, which were performed by employing sharp indenters with five varying centerline-to-face angles (psi). Comparison experiments were also conducted on (1 1 0) single crystalline Cu. Experimental results indicate that, unlike coarsegrained materials, nt-Cu is prone to plastic flow softening with large material pile-up around the indentation impression at high levels of strains. Localized detwinning becomes more significant with decreasing psi, concomitant with reduced strain-rate sensitivity (m) and enhanced activation volume (V*). The m of nt-Cu is found to depend sensitively on psi with a variation of more than a factor of 3, whereas V* exhibits a much less sensitive trend. This paper discusses the validation of the experimental techniques and the implications of various deformation kinetic parameters on the underlying deformation mechanisms of nt-Ca. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of polymer structure and its influence on uniaxial anisotropic stress under time-varying uniaxial strain, and the role of external control variables such as temperature, strain rate, chain length, and density, using molecular dynamics simulation. At temperatures higher than glass transition, stress anisotropy in the system is reduced even though the bond stretch is greater at higher temperatures. There is a significant increase in the stress level with increasing density. At higher densities, the uncoiling of the chains is suppressed and the major contribution to the deformation is by internal deformation of the chains. At faster rates of loading stress anisotropy increases. The deformation mechanism is mostly due to bond stretch and bond bending rather than overall shape and size. Stress levels increase with longer chain length. There is a critical value of the functionality of the cross-linkers beyond which the uniaxial stress developed increases caused primarily by bond stretching due to increased constraint on the motion of the monomers. Stacking of the chains in the system also plays a dominant role in the behaviour in terms of excluded volume interactions. Low density, high temperature, low values of functionality of cross-linkers, and short chain length facilitate chain uncoiling and chain slipping in cross-linked polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) and its derivatives have prompted a great surge in interest owing to their potential as lead-free piezoelectrics. In spite of five decades since its discovery, there is still a lack of clarity on crucial issues such as the origin of significant dielectric relaxation at room temperature, structural factors influencing its depoling, and the status of the recently proposed monoclinic (Cc) structure vis-a-vis the nanosized structural heterogeneities. In this work, these issues are resolved by comparative analysis of local and global structures on poled and unpoled NBT specimens using electron, x-ray, and neutron diffraction in conjunction with first-principles calculation, dielectric, ferroelectric, and piezoelectric measurements. The reported global monoclinic (Cc) distortion is shown not to correspond to the thermodynamic equilibrium state at room temperature. The global monocliniclike appearance rather owes its origin to the presence of local structural and strain heterogeneities. Poling removes the structural inhomogeneities and establishes a long-range rhombohedral distortion. In the process the system gets irreversibly transformed from a nonergodic relaxor to a normal ferroelectric state. The thermal depoling is shown to be associated with the onset of incompatible in-phase tilted octahedral regions in the field-stabilized long range rhombohedral distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated area changes in glaciers covering an area of similar to 200 km(2) in the Tista basin, Sikkim, Eastern Indian Himalaya, between similar to 1990 and 2010 using Landsat Thematic Mapper (TM) and Indian Remote-sensing Satellite (IRS) images and related the changes to debris cover, supraglacial lakes and moraine-dam lakes. The glaciers lost an area of 3.3 +/- 0.8% between 1989/90 and 2010. More detailed analysis revealed an area loss of 2.00 +/- 0.82, 2.56 +/- 0.61 and 2.28 +/- 2.01 km(2) for the periods 1989-97, 1997-2004/05 and 2004-2009/10, respectively. This indicates an accelerated retreat of glaciers after 1997. On further analysis, we observed (1) the formation and expansion of supraglacial lakes on many debris-covered glaciers and (2) the merging of these lakes over time, leading to the development of large moraine-dam lakes. We also observed that debris-covered glaciers with lakes lose a greater area than debris-covered glaciers without lakes and debris-free glaciers. The climatic data for 24 years (1987-2011), measured at the Gangtok meteorological station (1812 m a.s.l.), showed that the region experienced a 1.0 degrees C rise in the summer minimum temperature and a 2.0 degrees C rise in the winter minimum temperature, indicating hotter summers and warmer winters. There was no significant trend in the total annual precipitation. We find that glacier retreat is caused mainly by a temperature increase and that debris-covered glaciers can retreat at a faster rate than debris-free glaciers, if associated with lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.