297 resultados para Packet Network
Resumo:
Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).
Resumo:
In this paper, we design a new dynamic packet scheduling scheme suitable for differentiated service (DiffServ) network. Designed dynamic benefit weighted scheduling (DBWS) uses a dynamic weighted computation scheme loosely based on weighted round robin (WRR) policy. It predicts the weight required by expedited forwarding (EF) service for the current time slot (t) based on two criteria; (i) previous weight allocated to it at time (t-1), and (ii) the average increase in the queue length of EF buffer. This prediction provides smooth bandwidth allocation to all the services by avoiding overbooking of resources for EF service and still providing guaranteed services for it. The performance is analyzed for various scenarios at high, medium and low traffic conditions. The results show that packet loss is minimized, end to end delay is minimized and jitter is reduced and therefore meet quality of service (QoS) requirement of a network.
Resumo:
We discuss here the crucial role of the particle network and its stability on the long-range ion transport in solid liquid composite electrolytes. The solid liquid composite electrolytes chosen for the study here comprise nanometer sized silica (SiO2) particles having various surface chemical functionalities dispersed in nonaqueous lithium salt solutions, viz, lithium perchlorate (LiClO4) in two different polyethylene glycol based solvents. These systems constitute representative examples of an independent class of soft matter electrolytes known as ``soggy sand'' electrolytes, which have tremendous potential in diverse electrochemical devices. The oxide additive acts as a heterogeneous dopant creating free charge carriers and enhancing the local ion transport. For long-range transport, however, a stable spanning particle network is needed. Systematic experimental investigations here reveal that the spatial and time dependent characteristics of the particle network in the liquid solution are nontrivial. The network characteristics are predominantly determined by the chemical makeup of the electrolyte components and the chemical interactions between them. It is noteworthy that in this study the steady state macroscopic ionic conductivity and viscosity of the solid liquid composite electrolyte are observed to be greatly determined by the additive oxide surface chemical functionality, solvent chemical composition, and solvent dielectric constant.
Resumo:
In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.
Resumo:
The time division multiple access (TDMA) based channel access mechanisms perform better than the contention based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). Most of the existing distributed TDMA scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. In this paper, we propose a novel scheme for TDMA scheduling in WSNs, which can generate a compact schedule similar to static scheduling algorithms, while its runtime performance can be matched with those of dynamic scheduling algorithms. Furthermore, the proposed distributed TDMA scheduling algorithm has the capability to trade-off schedule length with the time required to generate the schedule. This would allow the developers of WSNs, to tune the performance, as per the requirement of prevalent WSN applications, and the requirement to perform re-scheduling. Finally, the proposed TDMA scheduling is fault-tolerant to packet loss due to erroneous wireless channel. The algorithm has been simulated using the Castalia simulator to compare its performance with those of others in terms of generated schedule length and the time required to generate the TDMA schedule. Simulation results show that the proposed algorithm generates a compact schedule in a very less time.
Resumo:
The major challenges in Li-S batteries are the formation of soluble polysulphides during the reversible conversion of S-8 <-> Li2S, large changes in sulphur particle volume during lithiation and extremely poor charge transport in sulphur. We demonstrate here a novel and simple strategy to overcome these challenges towards practical realization of a stable high performance Li-S battery. For the first time, a strategy is developed which does away with the necessity of pre-fabricated high surface area hollow-structured adsorbates and also multiple nontrivial synthesis steps related to sulphur loading inside such adsorbates. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li-S batteries. The PEG and PAni network around the sulphur nanoparticles serves as an efficient flexible trap for sulphur and polysulphides and also provides distinct pathways for electrons (through PAni) and ions (through PEG) during battery operation. Contrary to the cathodes demonstrated based on various carbon-sulphur composites, the mixed conducting S-MIEC showed an extremely high loading of 75%. The S-MIEC exhibited a stable capacity of nearly 900 mA h g(-1) at the end of 100 cycles at a 1C current rate.
Resumo:
A person walks along a line (which could be an idealisation of a forest trail, for example), placing relays as he walks, in order to create a multihop network for connecting a sensor at a point along the line to a sink at the start of the line. The potential placement points are equally spaced along the line, and at each such location the decision to place or not to place a relay is based on link quality measurements to the previously placed relays. The location of the sensor is unknown apriori, and is discovered as the deployment agent walks. In this paper, we extend our earlier work on this class of problems to include the objective of achieving a 2-connected multihop network. We propose a network cost objective that is additive over the deployed relays, and accounts for possible alternate routing over the multiple available paths. As in our earlier work, the problem is formulated as a Markov decision process. Placement algorithms are obtained for two source location models, which yield a discounted cost MDP and an average cost MDP. In each case we obtain structural results for an optimal policy, and perform a numerical study that provides insights into the advantages and disadvantages of multi-connectivity. We validate the results obtained from numerical study experimentally in a forest-like environment.
Resumo:
Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks.
Resumo:
Guided waves using piezo-electric wafer active sensors (PWAS) is one of the useful techniques of damage detection. Sensor network optimization with minimal network hardware footprint and maximal area of coverage remains a challenging problem. PWAS sensors are placed at discrete locations in order to inspect damages in plates and the idea has the potential to be extended to assembled structures. Various actuator-sensor configurations are possible within the network in order to identify and locate damages. In this paper we present a correlation based approach to monitor cracks emanating from rivet line using a simulated guided wave signal whose sensor is operating in pulse echo mode. Discussions regarding the identification of phase change due to reflections from the crack are also discussed in this paper.
Resumo:
We develop an approximate analytical technique for evaluating the performance of multi-hop networks based on beaconless IEEE 802.15.4 ( the ``ZigBee'' PHY and MAC), a popular standard for wireless sensor networks. The network comprises sensor nodes, which generate measurement packets, relay nodes which only forward packets, and a data sink (base station). We consider a detailed stochastic process at each node, and analyse this process taking into account the interaction with neighbouring nodes via certain time averaged unknown variables (e.g., channel sensing rates, collision probabilities, etc.). By coupling the analyses at various nodes, we obtain fixed point equations that can be solved numerically to obtain the unknown variables, thereby yielding approximations of time average performance measures, such as packet discard probabilities and average queueing delays. The model incorporates packet generation at the sensor nodes and queues at the sensor nodes and relay nodes. We demonstrate the accuracy of our model by an extensive comparison with simulations. As an additional assessment of the accuracy of the model, we utilize it in an algorithm for sensor network design with quality-of-service (QoS) objectives, and show that designs obtained using our model actually satisfy the QoS constraints (as validated by simulating the networks), and the predictions are accurate to well within 10% as compared to the simulation results in a regime where the packet discard probability is low. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
For the physical-layer network-coded wireless two-way relaying, it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to channel conditions greatly reduces the impact of multiple-access interference, which occurs at the relay, and all these network coding maps should satisfy a requirement called exclusive law. We extend this approach to an accumulate-compute-and-forward protocol, which employs two phases: a multiple access (MA) phase consisting of two channel uses with independent messages in each channel use and a broadcast (BC) phase having one channel use. Assuming that the two users transmit points from the same 4-phase-shift keying (PSK) constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin square of side 16, and conversely, this relationship can be used to get the network coding maps satisfying the exclusive law. Two methods of obtaining this network coding map to be used at the relay are discussed. Using the structural properties of the Latin squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps for the case. Having obtained all the Latin squares, a criterion is provided to select a Latin square for a given realization of fade state. This criterion turns out to be the same as the one used byMuralidharan et al. for two-stage bidirectional relaying.