439 resultados para PRESSURE-VISCOSITY COEFFICIENT
Resumo:
ZrO2–Al2O3 powders were synthesized by spray pyrolysis. These powders were sintered at 1 GPa in the temperature range of 700–1100 °C. The microstructural evolution and densification are reported in this paper. The application of 1 Gpa pressure lowers the crystallization temperature from ∼850 to <700 °C. Similarly, the transformation temperature under 1 GPa pressure for γ → α–Al2O3 reduces from ∼1100 to 700–800 °C range, and that for t → m ZrO2 reduces from ∼1050 to 700–800 °C range. It was possible to obtain highly dense nanocrystalline ZrO2–Al2O3 composite at temperatures as low as 700 °C. The effect of high pressure on nucleation and transformation of phases is discussed.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.
The Behaviour of Two-Phase Flow of DNAPL and Water through a Fractured Rock under Confining Pressure
Resumo:
This study presents the characterization of DNAPL and water flow in a fracture under confining pressure. A comprehensive mathematical model and the conditions under which DNAPL will enter an initially water-saturated deforming rock fracture are discussed. A numerical model with which to predict the quantity of each phase in terms of their saturations in deforming rock joint is developed. The effect of varying confining stresses on the traverse time of DNAPL across a fractured aquitard is studied. The sensitivity analysis for physical and hydraulic properties like initial fracture apertures, fracture dips, equivalent fracture aperture and confining pressures are performed and discussed.
Resumo:
Electrical resistivity studies of the charge transfer complex benzidine—TCNQ and its inclusion compound, have been carried out up to pressures 8 GPa. Two types of behaviour were observed in these complexes under high pressure and this difference is interpreted and discussed.
Resumo:
Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M, the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, α) of each mean flow belongs to different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II.” For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, Gmax, and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For α=0, the linear stability operator can be partitioned into L∼L̅ +Re2 Lp, and the Re-dependent operator Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t∕Re)∼Re2. In contrast, the dominance of Lp is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow.
Resumo:
Abstract—A method of testing for parametric faults of analog circuits based on a polynomial representaion of fault-free function of the circuit is presented. The response of the circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant frequencies apart from DC. Classification of CUT is based on a comparison of the estimated polynomial coefficients with those of the fault free circuit. The method needs very little augmentation of circuit to make it testable as only output parameters are used for classification. This procedure is shown to uncover several parametric faults causing smaller than 5 % deviations the nominal values. Fault diagnosis based upon sensitivity of polynomial coefficients at relevant frequencies is also proposed.