420 resultados para Optical navigation
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
Fine powders of beta-Ga2O3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase beta-Ga2O3 nanostructures were obtained by thermal treatment at 900 degrees C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor-acceptor gallium-oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.
Resumo:
This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.
Resumo:
The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.
Resumo:
Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 degrees C using the NSF technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 angstrom and c = 5.2018 angstrom with hexagonal structure and preferential orientation along (002) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (epsilon(r), and epsilon(i)) and optical conductivities (sigma(r), and sigma(i)) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9-O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.
Resumo:
This paper reports on the fabrication of cantilever silicon-on-insulator (SOI) optical waveguides and presents solutions to the challenges of using a very thin 260-nm active silicon layer in the SOI structure to enable single-transverse-mode operation of the waveguide with minimal optical transmission losses. In particular, to ameliorate the anchor effect caused by the mean stress difference between the active silicon layer and buried oxide layer, a cantilever flattening process based on Ar plasma treatment is developed and presented. Vertical deflections of 0.5 mu m for 70-mu m-long cantilevers are mitigated to within few nanometers. Experimental investigations of cantilever mechanical resonance characteristics confirm the absence of significant detrimental side effects. Optical and mechanical modeling is extensively used to supplement experimental observations. This approach can satisfy the requirements for on-chip simultaneous readout of many integrated cantilever sensors in which the displacement or resonant frequency changes induced by analyte absorption are measured using an optical-waveguide-based division multiplexed system.
Resumo:
This study deals with the influence of Er-doping level and thermal annealing on the optical properties of amorphous Ge-Ga-S thin films. Nominal compositions of (GeS2)(75)(Ga2S3)(25) doped with high concentrations of 2.1 and 2.4 mol% Er2S3 (corresponding to 1.2 and 1.4 at% Er, respectively) have been chosen for this work. The results have been related to those obtained for the un-doped samples. The values of the refractive index, the absorption coefficient and optical band gap have been determined from the transmittance data. It has been found that the optical band gap of un-doped and 2.1 mol% Er2S3-doped films slightly increases with annealing temperature, whereas at 2.4 mol% Er2S3-doping level it is decreased. The dependences of the optical parameters on the erbium concentration and effect of annealing in the temperature range of 100-200 degrees C have been evaluated and discussed in relation to possible structural changes.
Resumo:
This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1-3 mu m length) were grown only in 1-5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the < 0001 > crystallographic direction. The coated nanorods were found to be highly dense having a thickness of similar to 1-3 mu m over the entire area 20 mm x 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.
Resumo:
The design and analysis of an optical read-out scheme based on a grated waveguide (GWG) resonator for interrogating microcantilever sensor arrays is presented. The optical system consisting of a micro cantilever monolithically integrated in proximity to a grated waveguide (GWG), is realized in silicon optical bench platform. The mathematical analysis of the optical system is performed using a Fabry-Perot interferometer model with a lossy cavity formed between the cantilever and the GWG and an analytical expression is derived for the optical power transmission as a function of the cantilever deflection which corresponds to cavity width variation. The intensity transmission of the optical system for different cantilever deflections estimated using the analytical expression captures the essential features exhibited by a FDTD numerical model.
Resumo:
We determine the nature of coupled phonons in mixed crystal of Cs-0.9(NH4)(0.1)H2AsO4 using inelastic light scattering studies in the temperature range of 5 K to 300 K covering a spectral range of 60-1100 cm(-1). The phase transition in this system are marked by the splitting of phonon modes, appearance of new modes and anomalies in the frequency as well as linewidth of the phonon modes near transition temperature. In particular, we observed the splitting of symmetric (v(1)) and antisymmetric (v(3)) stretching vibrations associated with AsO4 tetrahedra below transition temperature (T-c(*) similar to 110 K) attributed to the lowering of site symmetry of AsO4 in orthorhombic phase below transition temperature. In addition, the step-up (hardening) and step-down (softening) of the AsO4 bending vibrations (v(4) (S9, S11) and v(2) (S6)) below transition temperature signals the rapid development of long range ferroelectric order and proton ordering. The lowest frequency phonon (S1) mode observed at similar to 92 cm(-1) shows anomalous blue shift (similar to 12 %) from 300 K to 5 K with no sharp transition near T-c(*) unlike other observed phonon modes signaling its potential coupling with the proton tunneling mode. (C) 2013 Author(s).
Resumo:
In contemporary world optoelectronics materials are used in daily life owing to its verity of applications. Utility of these materials makes them attractive for investigations. Specifically study regarding optical properties of recent developed materials is worth for technical uses. Therefore, this work demonstrates a comparative study of extinction coefficient (K), real dielectric (epsilon') and imaginary dielectric (epsilon `') constants, refractive index (n) and optical energy band gap (E-g) with structural unit < r > for Se98-xZn2Inx (0 <= X-In <= 10) and Se93-yZn2Te5Iny (0 <= Y-In <= 10) chalcogenide glasses. Fixed amount of Te with increasing In concentration as cost of Se is largely influence the optical parameters of the materials. Values of optical parameters are obtained higher and lower respectively at thresholds structural units values. This comparative study demonstrates that enhanced values of optical parameters have been obtained for Te containing Se-Zn-In glasses.
Resumo:
A new approach that can easily incorporate any generic penalty function into the diffuse optical tomographic image reconstruction is introduced to show the utility of nonquadratic penalty functions. The penalty functions that were used include quadratic (l(2)), absolute (l(1)), Cauchy, and Geman-McClure. The regularization parameter in each of these cases was obtained automatically by using the generalized cross-validation method. The reconstruction results were systematically compared with each other via utilization of quantitative metrics, such as relative error and Pearson correlation. The reconstruction results indicate that, while the quadratic penalty may be able to provide better separation between two closely spaced targets, its contrast recovery capability is limited, and the sparseness promoting penalties, such as l(1), Cauchy, and Geman-McClure have better utility in reconstructing high-contrast and complex-shaped targets, with the Geman-McClure penalty being the most optimal one. (C) 2013 Optical Society of America
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.