466 resultados para One-nucleon spectra
Resumo:
We propose that strong fluorescence in conjugated polymers requires a dipole-allowed state to be the lowest singlet. Hückel theory for para-conjugated phenyl rings yields an extended, topologically one-dimensional ?-system with increased alternation, states localized on each ring, and charge-transfer excitations between them. Exact Pariser�Parr�Pople results and molecular spectra for oligomers support a topological contribution and a lowest dipole-allowed singlet in phenylene polymers.
Resumo:
We consider the Kramers problem for a long chain polymer trapped in a biased double-well potential. Initially the polymer is in the less stable well and it can escape from this well to the other well by the motion of its N beads across the barrier to attain the configuration having lower free energy. In one dimension we simulate the crossing and show that the results are in agreement with the kink mechanism suggested earlier. In three dimensions, it has not been possible to get an analytical `kink solution' for an arbitrary potential; however, one can assume the form of the solution of the nonlinear equation as a kink solution and then find a double-well potential in three dimensions. To verify the kink mechanism, simulations of the dynamics of a discrete Rouse polymer model in a double well in three dimensions are carried out. We find that the time of crossing is proportional to the chain length, which is in agreement with the results for the kink mechanism. The shape of the kink solution is also in agreement with the analytical solution in both one and three dimensions.
Resumo:
NMR spectra of cis,cis-mucanonitrile oriented in a liquid crystal have been analysed using the connectivity information obtained from a modified Z-COSY experiment which provided crucial clues for the starting parameters for the iterative analysis. The proton spectra with and without C-13 satellites and the C-13 spectra have thus been interpreted. The indirect spin-spin couplings required for the analyses have been obtained from the corresponding isotropic spectra. The H-1-H-1 and C-13-H-1 dipolar couplings so obtained have been utilized to determine the relative internuclear distances. The results indicate that the molecule is planar. (C) 1994 Academic Press, Inc.
Resumo:
Preparation of the key intermediates, 11 and 21, required for the synthesis of (+/-)-allo-cedrol (khusiol) is reported by a novel methodology involving the substitution at the bridgehead position of 1-methoxybicyclo[2.2.2]oct-5-en-2-one derivatives
Resumo:
We have developed a theory for an electrochemical way of measuring the statistical properties of a nonfractally rough electrode. We obtained the expression for the current transient on a rough electrode which shows three times regions: short and long time limits and the transition region between them. The expressions for these time ranges are exploited to extract morphological information about the surface roughness. In the short and long time regimes, we extract information regarding various morphological features like the roughness factor, average roughness, curvature, correlation length, dimensionality of roughness, and polynomial approximation for the correlation function. The formulas for the surface structure factors (the measure of surface roughness) of rough surfaces in terms of measured reversible and diffusion-limited current transients are also obtained. Finally, we explore the feasibility of making such measurements.
Resumo:
Degradation of the tolyl group in the tricyclic ketone 1b followed by stereospecific reduction of the resultant ketoester (6) furnishes the title compound (4) containing a new tetracyclic framework, establishing the stereochemistry of the aryl group in 1.
Resumo:
The coefficient of thermochromism of polyaniline solutions has been found to be solvent dependent and the solvent effect is not negligible. Hence, thermochromism of polyaniline solutions cannot be explained solely on the basis of conformational change induced by a change in temperature. Further, comparison of the solvatochromism of polyaniline and polytoluidine shows a higher solvatochromic shift for the former. It implies that the higher energy associated with the exciton peak of polytoluidine is not due to the higher ring torsional angle induced by the higher steric repulsion of the methyl group, as widely accepted, but is due to its less solvatochromic red-shift as compared to polyaniline.
Resumo:
We present the exact solution to a one-dimensional multicomponent quantum lattice model interacting by an exchange operator which falls off as the inverse sinh square of the distance. This interaction contains a variable range as a parameter and can thus interpolate between the known solutions for the nearest-neighbor chain and the inverse-square chain. The energy, susceptibility, charge stiffness, and the dispersion relations for low-lying excitations are explicitly calculated for the absolute ground state, as a function of both the range of the interaction and the number of species of fermions.
Resumo:
This work deals with the effects of weak nonlinearity and weak dissipation on a linear wave in relativistic gasdynamics. Using perturbation and asymptotic expansions, a relativistic analogue of generalised one-dimensional Burgers' equation of classical gasdynamics is derived to describe far-field description of the wave. Steady state solution is presented for strict one-dimensional case.
Resumo:
The concept of one enzyme-one activity had influenced biochemistry for over half a century. Over 1000 enzymes are now described. Many of them are highly 'specific'. Some of them are crystallized and their three-dimensional structures determined. They range from 12 to 1000 kDa in molecular weight and possess 124 to several hundreds of amino acids. They occur as single polypeptides or multiple-subunit proteins. The active sites are assembled on these by appropriate tertiary folding of the polypeptide chain, or by interaction of the constituent subunits. The substrate is held by the side-chains of a few amino acids at the active site on the surface, occupying a tiny fraction of the total area. What is the bulk of the protein behind the active site doing? Do all proteins have only one function each? Why not a protein have more than one active site on its large surface? Will we discover more than one activity for some proteins? These newer possibilities are emerging and are finding experimental support. Some proteins purified to homogeneity using assay methods for different activities are now recognized to have the same molecular weight and a high degree of homology of amino acid sequence. Obviously they are identical. They represent the phenomenon of one protein-many functions.
Resumo:
We study the electronic structure of NaCuO2 by analysing experimental core level photoemission and X-ray absorption spectra using a cluster as well as an Anderson impurity Hamiltonian including the band structure of the oxygen sublattice. We show that the X-ray absorption results unambiguously establish a negative value of the charge transfer energy, A. Further, mean-field calculations for the edge-shared one-dimensional CuO2 lattice of NaCuO2 within the multiband Hubbard Hamiltonian show that the origin of the insulating nature lies in the band structure rather than in the correlation effects. LMTO-ASA band structure calculations suggest that NaCuO2 is an insulator with a gap of around 1 eV.
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.
Resumo:
The SCF/DZP and MP2/DZP methods of ab initio quantum chemistry have been utilized to study the structure, vibrational spectra, binding energy, and barrier to internal rotation of methyl isocyanide-borane and acetonitrile-borane adducts. The eclipsed conformation of the complexes was predicted to be a minimum, and the staggered form is a transition state with a barrier height of about 10 cal/mol. The vibrational analyses of CH3NC-BH3 and CH3CN-BH3 and several of their isotopomers have been carried out by the GF matrix method. Computations have also been carried out for free CH3NC and CH3CN in order to investigate the changes in CH3NC and CH3CN as a result of their complex formation with BH3. To obtain an acceptable set of force constants, a recently proposed procedure ''RECOVES'' has been utilized. The increase in the N=C/C=N stretching force constant of CH3NC/CH3CN on adduct formation is interpreted with the help of Parr and Borkman's model. The binding energies for the two adducts have been determined taking basis set superposition error (BSSE) into consideration. The effect of the BSSE on structure, dipole moment, and vibrational frequencies of CH3CN and CH3NC is also evaluated. The predicted infrared band intensities for the two complexes are in good agreement with the experimentally observed features, and they have been utilized in the assignment of vibrational frequencies.
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.