328 resultados para Nickel alloys.
Resumo:
The recrystallization behaviour of cold-rolled nanocrystalline (nc) nickel has been studied at temperatures between 573 and 1273 K using bulk texture measurements and electron back-scattered diffraction. The texture in nc nickel is different from that of its microcrystalline counterpart, consisting of a strong Goss (G) and rotated Goss (RG) components at 773 K instead of the typical cube component. The texture evolution in nc Ni has been attributed to the prior deformation textures and nucleation advantage of G and RG grains.
Resumo:
Ligational behaviour of (E)-2-amino-N'-1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ionscopper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, H-1 NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of Ni(aheb)(2)]Cl-2 center dot 4H(2)O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Mg and its alloys become natural biomaterials as the elemental Mg is found in the human body in abundance and their mechanical properties being akin to the natural bone as well as due to their inherent bioabsorbable/bioresorbable property. This paper discusses the development of new Mg alloys and their corrosion characteristics in detail. The latest advancements in coating of Mg alloys to control their degradation rate are also reviewed along with the future challenges that need to be addressed.
Resumo:
We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.
Resumo:
The micromechanical aspects of rolling texture development in Ni-40 wt.% Co alloy during very large reductions (up to epsilon(t) = 3.9) have been studied. The alloy showed a typical Cu-type texture up to a true strain of epsilon(t) = 3; however, the texture undergoes an abrupt transition to Bs-type on further rolling to epsilon(t) approximate to 4. (The Bs-type texture, here, comprises almost equal fractions of Goss and Bs components.) Microstructural observations, at early stages, show that deformation is accommodated entirely by slip, and very little presence of deformation twinning is observed to explain the texture transition. However, at much higher reduction levels, micrographs show a high fraction of Cu-type shear bands. These bands are predominantly found in Cu-oriented grains and the crystallites inside the shear bands are preferentially oriented towards Goss, which could explain the final texture evolution. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Bulk samples of S40Se60,Sb-x (with x=10, 20, 30 and 40 at. %) were prepared from high purity chemicals by melt quenching technique. The samples compositions were confirmed by using energy dispersive analysis of X-rays. X-ray diffraction studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with compositional has been investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The optical band gap of the thin films is found to be decreased with composition. Increasing Sb content was found to affect the structural and optical properties of bulk samples. The intensity of core level spectra changes with the addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly show the structural modifications due to Sb addition.
Resumo:
Lead telluride and its alloys are well known for their thermoelectric applications. Here, a systematic study of PbTe1-ySey alloys doped with indium has been done. The powder X-Ray diffraction combined with Rietveld analysis confirmed the polycrystalline single phase nature of the samples, while microstructural analysis with scanning electron microscope results showed densification of samples and presence of micrometer sized particles. The temperature dependent transport properties showed that in these alloys, indium neither pinned the Fermi level as it does in PbTe, nor acted as a resonant dopant as in SnTe. At high temperatures, bipolar effect was observed which restricted the zT to 0.66 at 800 K for the sample with 30% Se content. (C) 2014 AIP Publishing LLC.
Resumo:
The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present study investigates the critical role of deformation twinning and Bs-type shear bands in the evolution of deformation texture in a low stacking fault energy Ni-60Co alloy up to very large rolling strain (epsilon(t) approximate to 4). The alloy develops a strong brass-type rolling texture, and its formation is initiated at the early stages of deformation. Extensive twinning is observed at the intermediate stages of deformation, which causes significant texture reorientation towards alpha-fiber. A pseudo-in-situ electron back-scattered diffraction technique adopted to capture orientation changes within individual grains during the early stages suggests that twinning should be subsequently aided by crystallographic slip to attain alpha-fiber (< 1 1 0 >parallel to ND) orientations. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of < 1 1 1 >parallel to ND components. The volume fraction of shear bands is significant at higher strains, and crystallites within the bands preferentially show < 1 1 0 >parallel to ND components. The absence of the Cu {1 1 2}< 1 1 1 > component in the initial texture, and subsequently during rolling, indicates that, for the evolution of a brass-type texture, the presence of the Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Lead-tin-telluride is a well-known thermoelectric material in the temperature range 350-750 K. Here, this alloy doped with manganese (Pb0.96-yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 mu m to 10 mm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300-720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp-d orbital interaction between the Pb1-ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.
Resumo:
Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbSxTe(1-x) and PbSexTe(1-x) (0 <= x <= 1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.
Resumo:
Aiming to develop high mechanical strength and toughness by tuning ultrafine lamellar spacing of magnetic eutectic alloys, we report the mechanical and magnetic properties of the binary eutectic alloys Co90.5Zr9.5 and Fe90.2Zr9.8, as well as the pseudo-binary eutectic alloys Co82.4Fe8Zr9.6, Co78Fe12.4Zr9.6 and Co49.2Fe49.2Zr9.6 developed by suction-casting. The lower lamellar spacing around 100 nm of the eutectics Co49.2Fe49.2Zr9.6 yields a high hardness of 713(+/- 20) VHN. Magnetic measurements reveal high magnetic moment of 1.92 mu B (at 5 K) and 1.82 mu B (at 300 K) per formula unit for this composition. The magnetization vs. applied field data at 5 K show a directional preference to some extent and therefore smaller non-collinear magnetization behavior compared to Co11Zr2 reported in the literature due to exchange frustration and transverse spin freezing owing to the presence of smaller Zr content. The decay of magnetization as a function of temperature along the easy axis of magnetization of all the eutectic compositions can be described fairly well by the spin wave excitation equation Delta M/M(0) = BT3/2 + CT5/2. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Few-layer transition metal dichalcogenide alloys based on molybdenum sulphoselenides MoS2(1-x)Se2x] possess higher hydrogen evolution (HER) activity compared to pristine few-layer MoS2 and MoSe2. Variation of the sulphur or selenium content in the parent dichalcogenides reveals a systematic structure-activity relationship for different compositions of alloys, and it is found that the composition MoS1.0Se1.0 shows the highest HER activity amongst the catalysts studied. The tunable electronic structure of MoS2/MoSe2 upon Se/S incorporation probably assists in the realization of high HER activity.
Resumo:
The development of high-strength aluminum alloys that can operate at 250 degrees C and beyond remains a challenge to the materials community. In this paper we report preliminary development of nanostructural Al-Cu-Ni ternary alloys containing alpha-Al, binary Al2Cu and ternary Al2Cu4Ni intermetallics. The alloys exhibits fracture strength of similar to 1 GPa with similar to 9% fracture strain at room temperature. At 300 degrees C, the alloy retains the high strength. The reasons for such significant mechanical properties are rationalized by unraveling the roles and response of various microstructural features. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The influence of absorbed hydrogen on the mechanical behavior of a series of Ni-Nb-Zr amorphous metallic ribbons was investigated through nanoindentation experiments. It was revealed that the influence is significantly dependent on Zr content, that is, hydrogen induced softening in relatively low-Zr alloys, whereas hydrogen induced hardening in high-Zr alloys. The results are discussed in terms of the different roles of mobile and immobile hydrogen in the plastic deformation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.