380 resultados para Mechanosensitive Ion-channel
Resumo:
The particle and fluid velocity fluctuations in a turbulent gas-particle suspension are studied experimentally using two-dimensional particle image velocimetry with the objective of comparing the experiments with the predictions of fluctuating force simulations. Since the fluctuating force simulations employ force distributions which do not incorporate the modification of fluid turbulence due to the particles, it is of importance to quantify the turbulence modification in the experiments. For experiments carried out at a low volume fraction of 9.15 x 10(-5) (mass loading is 0.19), where the viscous relaxation time is small compared with the time between collisions, it is found that the gas-phase turbulence is not significantly modified by the presence of particles. Owing to this, quantitative agreement is obtained between the results of experiments and fluctuating force simulations for the mean velocity and the root mean square of the fluctuating velocity, provided that the polydispersity in the particle size is incorporated in the simulations. This is because the polydispersity results in a variation in the terminal velocity of the particles which could induce collisions and generate fluctuations; this mechanism is absent if all of the particles are of equal size. It is found that there is some variation in the particle mean velocity very close to the wall depending on the wall-collision model used in the simulations, and agreement with experiments is obtained only when the tangential wall-particle coefficient of restitution is 0.7. The mean particle velocity is in quantitative agreement for locations more than 10 wall units from the wall of the channel. However, there are systematic differences between the simulations and theory for the particle concentrations, possibly due to inadequate control over the particle feeding at the entrance. The particle velocity distributions are compared both at the centre of the channel and near the wall, and the shape of the distribution function near the wall obtained in experiments is accurately predicted by the simulations. At the centre, there is some discrepancy between simulations and experiment for the distribution of the fluctuating velocity in the flow direction, where the simulations predict a bi-modal distribution whereas only a single maximum is observed in the experiments, although both distributions are skewed towards negative fluctuating velocities. At a much higher particle mass loading of 1.7, where the time between collisions is smaller than the viscous relaxation time, there is a significant increase in the turbulent velocity fluctuations by similar to 1-2 orders of magnitude. Therefore, it becomes necessary to incorporate the modified fluid-phase intensity in the fluctuating force simulation; with this modification, the mean and mean-square fluctuating velocities are within 20-30% of the experimental values.
Resumo:
Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.
Resumo:
Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.
Resumo:
We report a low temperature synthesis of layered Na0×20CoO2 and K0×44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LixCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0×20CoO2 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting.
Resumo:
Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.
Resumo:
Gd1.95Eu0.4M0.01O3 (M = Li+ Na+ K+) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li+, Na+ and K+ in to Gd2O3:Eu3+ phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd2O3:Eu3+ phosphor was improved evidently by co-doping with Li+ ions whose radius is less than that of Gd3+ and hardly with Na+, K+ whose radius is larger than that of Gd3+. The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu3+ activator. These results will play an important role in seeking some more effective co-dopants. (C) 2011 Published by Elsevier B.V.
Resumo:
Nanoindentation experiments were conducted on a Ni+ ion-irradiated Zr-based bulk metallic glass (BMG). The irradiation was carried out using 2.5, 5, 10 and 15 MeV ions and a flux of similar to 10(16) ions/cm(2). Post mortem imaging of the indents reveals a transition in the deformation mechanism of the irradiated regions from heterogeneous shear banding to homogeneous flow. Additionally, the load-displacement curves exhibit a transition from serrated to continuous flow with increasing severity of irradiation damage. The stress-strain response obtained from micro-pillar compression experiments complements the indentation response exhibiting a decrease in the flow stress and an `apparent' strain hardening at the lowest irradiation damage investigated, which is not observed in the as-cast alloy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
``Soggy sand'' electrolyte, which essentially consists of oxide dispersions in nonaqueous liquid salt solutions, comprises an important class of soft matter electrolytes. The ion transport mechanism of soggy sand electrolyte is complex. The configuration of particles in the liquid solution has been observed to depend in a nontrivial manner on various parameters related to the oxide (concentration, size, surface chemistry) and solvent (dielectric constant, viscosity) as well as time. The state of the particles in solution not only affects ionic conductivity but also effectively the mechanical and electrochemical properties of the solid liquid composite. Apart from comprehensive understanding of the underlying phenomena that govern ion transport, which will benefit design of better electrolytes, the problem has far-reaching implications in diverse fields such as catalysis, colloid chemistry, and biotechnology.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
A Radio Frequency (RF) based digital data transmission scheme with 8 channel encoder/decoder ICs is proposed for surface electrode switching of a 16-electrode wireless Electrical Impedance Tomography (EIT) system. A RF based wireless digital data transmission module (WDDTM) is developed and the electrode switching of a EIT system is studied by analyzing the boundary data collected and the resistivity images of practical phantoms. An analog multiplexers based electrode switching module (ESM) is developed with analog multiplexers and switched with parallel digital data transmitted by a wireless transmitter/receiver (T-x/R-x) module working with radio frequency technology. Parallel digital bits are generated using NI USB 6251 card working in LabVIEW platform and sent to transmission module to transmit the digital data to the receiver end. The transmitter/receiver module developed is properly interfaced with the personal computer (PC) and practical phantoms through the ESM and USB based DAQ system respectively. It is observed that the digital bits required for multiplexer operation are sequentially generated by the digital output (D/O) ports of the DAQ card. Parallel to serial and serial to parallel conversion of digital data are suitably done by encoder and decoder ICs. Wireless digital data transmission module successfully transmitted and received the parallel data required for switching the current and voltage electrodes wirelessly. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using common ground current injection protocol and the boundary potentials developed at the voltage electrodes are measured. Resistivity images of the practical phantoms are reconstructed from boundary data using EIDORS. Boundary data and the resistivity images reconstructed from the surface potentials are studied to assess the wireless digital data transmission system. Boundary data profiles of the practical phantom with different configurations show that the multiplexers are operating in the required sequence for common ground current injection protocol. The voltage peaks obtained at the proper positions in the boundary data profiles proved the sequential operation of multiplexers and successful wireless transmission of digital bits. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn again indicates a sequential and proper operation of multiplexers as well as the successful wireless transmission of digital bits. Hence the developed RF based wireless digital data transmission module (WDDTM) is found suitable for transmitting digital bits required for electrode switching in wireless EIT data acquisition system. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Tungsten incorporated diamond like carbon (W-DLC) nanocomposite thin films with variable fractions of tungsten were deposited by using reactive biased target ion beam deposition technique. The influence of tungsten incorporation on the microstructure, surface topography, mechanical and tribological properties of the DLC were studied using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. Atomic force microscope (AFM), transmission electron microscopy (TEM), nano-indentation and nano-scratch tests. The amount of W in films gets increases with increasing target bias voltage and most of the incorporated W reacts with carbon to form WC nanoclusters. Using TEM and FFT pattern, it was found that spherical shaped WC nanoclusters were uniformly dispersed in the DLC matrix and attains hexagonal (W2C) crystalline structure at higher W concentration. On the other hand, the incorporation of tungsten led to increase the formation of C-sp(2) hybridized bonding in DLC network and which is reflected in the hardness and elastic modulus of W-DLC films. Moreover, W-DLC films show very low friction coefficient and increased adhesion to the substrate than the DLC film, which could be closely related to its unique nanostructure of the W incorporated thin films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.