375 resultados para Linear expansion coefficient
Resumo:
This paper reports on the numerical study of the linear stability of laminar premixed flames under zero gravity. The study specifically addresses the dependence of stability on finite rate chemistry with low activation energy and variable thermodynamic and transport properties. The calculations show that activation energy and details of chemistry play a minor role in altering the linear neutral stability results from asymptotic analysis. Variable specific heat makes a marginal change to the stability. Variable transport properties on the other hand tend to substantially enhance the stability from critical wave number of about 0.5 to 0.20. Also, it appears that the effects of variable properties tend to nullify the effects of non-unity Lewis number. When the Lewis number of a single species is different from unity, as will happen in a hydrogen-air premixed flame, the stability results remain close to that of unity Lewis number.
Resumo:
The performance parameters e.g. non-linear coefficient (α) and breakdown electric field (Eb1mA/cm2) of ZnO based ceramic varistors were found to improve after the addition of 10 mol% MgO. The improvement in the varistor properties is examined by ac impedance spectroscopy technique in the frequency range (1 Hz–10 MHz) between temperature 25–250°C and understood in terms of differing contributions from the equivalent electrical circuit elements.
Resumo:
We study the problem of finding a set of constraints of minimum cardinality which when relaxed in an infeasible linear program, make it feasible. We show the problem is NP-hard even when the constraint matrix is totally unimodular and prove polynomial-time solvability when the constraint matrix and the right-hand-side together form a totally unimodular matrix.
Resumo:
A biorthogonal series method is developed to solve Oseen type flow problems. The theory leads to a new set of eigenfunctions for a specific class of linear non-selfadjoint operators containing the biharmonic one. These eigenfunctions differ from those given earlier in the literature for the biharmonic operator. The method is applied to the problem of thermocapillary flow in a cylindrical liquid bridge of finite length with axial through flow. Flow and temperature distributions are obtained at leading order of an expansion for small surface tension Reynolds number and Prandtl number. Another related problem considered is that of cylindrical cavity flow. Solutions for both cases are presented in terms of biorthogonal series. The effect of axial through flow on velocity and temperature fields is discussed by numerical evaluation of the truncated analytical series. The presence of axial through flow not only convectively shifts the vortices induced by surface forces in the direction of the through flow, but also moves their centers toward the outer cylindrical boundary. This process can lead to significantly asymmetric flow structures.
Resumo:
The effect of substitution of calcium on the anisotropic axial thermal expansion of cordierite was investigated by using a high-temperature X-ray diffraction technique. The compositions were prepared by the sol–gel route. In the Mg2-xCax-Al4Si5O18 system, single-phase cordierite can be prepared for x up to 0.5. Thermal expansion anisotropy (αa–αc) of cordierites reduces progressively by the substitution of increasing amounts of Ca for Mg.
Resumo:
Non-linear resistors having current-limiting capabilities at lower field strengths, and voltage-limiting characteristics (varistors) at higher field strengths, were prepared from sintered polycrystalline ceramics of (Ba0.6Sr0.4)(Ti0.97Zr0.03)O3+0.3 at % La, and reannealed after painting with low-melting mixtures of Bi2O3 + PbO +B2O3. These types of non-linear characteristics were found to depend upon the non-uniform diffusion of lead and the consequent distribution of Curie points (T c) in these perovskites, resulting in diffuse phase transitions. Tunnelling of electrons across the asymmetric barrier at tetragonak-cubic interfaces changes to tunnelling across the symmetric barrier as the cubic phase is fully stabilized through Joule heating at high field strengths. Therefore the current-limiting characteristics switch over to voltage-limiting behaviour because tunnelling to acceptor-type mid-bandgap states gives way to band-to-band tunnelling.
Resumo:
The intercalation of linear alkylamines (C1-C4) in the two-dimensional (2D) Ising antiferromagnet, FePS3, has been investigated. Intercalation proceeds with a dilation of the interlayer distance. The expansion (approximately 3.8 angstrom) is the same for all four amine molecules, suggesting that they are oriented flat with respect to the layers. From an analysis of the products of deintercalation, it is concluded that the intercalated species are the alkylammonium cations and neutral amine molecules. The intercalated compounds are highly moisture sensitive, as reflected in the chemical nature of the intercalated species. Charge neutrality of the lattice after intercalation is preserved by the loss of Fe2+ ions from the lattice. These Fe2+ ions are further oxidized to form superparamagnetic Fe2O3 clusters, as confirmed by Mossbauer spectra and magnetic measurements. This was further corroborated by in situ EPR studies. The Fe-57 Mossbauer spectra of the intercalated compounds showed evidence for two species other than Fe2O3. On the basis of the observed isomer shifts and quadrupole splittings, they have been assigned to Fe2+ in an environment similar to that in FePS3 and in a distorted FePS3 environment. The temperature and field dependence of the magnetic susceptibility of single crystals of the amine-intercalated FePS3 have been measured. Their magnetic behavior shows many of the features expected of a 2D Ising antiferromagnet with random defects, Fe1-xPS3, in agreement with the mechanism of intercalation.
Resumo:
his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
We propose a novel formulation of the points-to analysis as a system of linear equations. With this, the efficiency of the points-to analysis can be significantly improved by leveraging the advances in solution procedures for solving the systems of linear equations. However, such a formulation is non-trivial and becomes challenging due to various facts, namely, multiple pointer indirections, address-of operators and multiple assignments to the same variable. Further, the problem is exacerbated by the need to keep the transformed equations linear. Despite this, we successfully model all the pointer operations. We propose a novel inclusion-based context-sensitive points-to analysis algorithm based on prime factorization, which can model all the pointer operations. Experimental evaluation on SPEC 2000 benchmarks and two large open source programs reveals that our approach is competitive to the state-of-the-art algorithms. With an average memory requirement of mere 21MB, our context-sensitive points-to analysis algorithm analyzes each benchmark in 55 seconds on an average.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Resumo:
Backlund transformations relating the solutions of linear PDE with variable coefficients to those of PDE with constant coefficients are found, generalizing the study of Varley and Seymour [2]. Auto-Backlund transformations are also determined. To facilitate the generation of new solutions via Backlund transformation, explicit solutions of both classes of the PDE just mentioned are found using invariance properties of these equations and other methods. Some of these solutions are new.
Resumo:
We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.
Resumo:
The minimum distance of linear block codes is one of the important parameter that indicates the error performance of the code. When the code rate is less than 1/2, efficient algorithms are available for finding minimum distance using the concept of information sets. When the code rate is greater than 1/2, only one information set is available and efficiency suffers. In this paper, we investigate and propose a novel algorithm to find the minimum distance of linear block codes with the code rate greater than 1/2. We propose to reverse the roles of information set and parity set to get virtually another information set to improve the efficiency. This method is 67.7 times faster than the minimum distance algorithm implemented in MAGMA Computational Algebra System for a (80, 45) linear block code.