362 resultados para Electronics engineers
Resumo:
In this paper, we consider spatial modulation (SM) operating in a frequency-selective single-carrier (SC) communication scenario and propose zero-padding instead of the cyclic-prefix considered in the existing literature. We show that the zero-padded single-carrier (ZP-SC) SM system offers full multipath diversity under maximum-likelihood (ML) detection, unlike the cyclic-prefix based SM system. Furthermore, we show that the order of ML detection complexity in our proposed ZP-SC SM system is independent of the frame length and depends only on the number of multipath links between the transmitter and the receiver. Thus, we show that the zero-padding applied in the SC SM system has two advantages over the cyclic prefix: 1) achieves full multipath diversity, and 2) imposes a relatively low ML detection complexity. Furthermore, we extend the partial interference cancellation receiver (PIC-R) proposed by Guo and Xia for the detection of space-time block codes (STBCs) in order to convert the ZP-SC system into a set of narrowband subsystems experiencing flat-fading. We show that full rank STBC transmissions over these subsystems achieves full transmit, receive as well as multipath diversity for the PIC-R. Furthermore, we show that the ZP-SC SM system achieves receive and multipath diversity for the PIC-R at a detection complexity order which is the same as that of the SM system in flat-fading scenario. Our simulation results demonstrate that the symbol error ratio performance of the proposed linear receiver for the ZP-SC SM system is significantly better than that of the SM in cyclic prefix based orthogonal frequency division multiplexing as well as of the SM in the cyclic-prefixed and zero-padded single carrier systems relying on zero-forcing/minimum mean-squared error equalizer based receivers.
Resumo:
The K-user multiple input multiple output (MIMO) Gaussian symmetric interference channel where each transmitter has M antennas and each receiver has N antennas is studied from a generalized degrees of freedom (GDOF) perspective. An inner bound on the GDOF is derived using a combination of techniques such as treating interference as noise, zero forcing (ZF) at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, as a function of the number of antennas and the log INR/log SNR level. Several interesting conclusions are drawn from the derived bounds. It is shown that when K > N/M + 1, a combination of the HK and IA schemes performs the best among the schemes considered. When N/M < K <= N/M + 1, the HK-scheme outperforms other schemes and is found to be GDOF optimal in many cases. In addition, when the SNR and INR are at the same level, ZF-receiving and the HK-scheme have the same GDOF performance.
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
In this letter, we quantify the transmit diversity order of the SM system operating in a closed-loop scenario. Specifically, the SM system relying on Euclidean distance based antenna subset selection (EDAS) is considered and the achievable diversity gain is evaluated. Furthermore, the resultant trade-off between the achievable diversity gain and switching gain is studied. Simulation results confirm our theoretical results. Specifically, at a symbol error rate of about 10(-4) the signal-to-noise ratio gain achieved by EDAS is about 7 dB in case of 16-QAM and about 5 dB in case of 64-QAM.
Resumo:
In this paper, a strategy for controlling a group of agents to achieve positional consensus is presented. The problem is constrained by the requirement that every agent must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming (LP) formulation that is computationally less intensive than earlier proposed methods. Moreover, a random perturbation input in the control command that helps the agents to come close to each other even for a large number of agents, which was not possible with an existing strategy in the literature, is introduced. The method is extended to achieve positional consensus at a prespecified location. The effectiveness of the approach is illustrated through simulation results. A comparison between the LP approach and the existing second-order cone programming-based approach is also presented. The algorithm was successfully implemented on a robotic platform with three robots.
Resumo:
This paper proposes a technique to suppress low-order harmonics for an open-end winding induction motor drive for a full modulation range. One side of the machine is connected to a main inverter with a dc power supply, whereas the other inverter is connected to a capacitor from the other side. Harmonic suppression (with complete elimination of fifth- and seventh-order harmonics) is achieved by realizing dodecagonal space vectors using a combined pulsewidth modulation (PWM) control for the two inverters. The floating capacitor voltage is inherently controlled during the PWM operation. The proposed PWM technique is shown to be valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter. Experimental results have been presented to validate the proposed technique.
Resumo:
Clinical microscopy is a versatile and robust tool used for the diagnosis of a plethora of diseases. However, due to various reasons, it remains inaccessible in resource limited settings. In this paper, we present an automated and cost-effective alternative to microscopy for use in clinical diagnostics. With the use of custom optics and microfluidics, we demonstrate a field-portable imaging flow cytometry system. Using the presented system, we have been able to image 586 cells per second. We demonstrate the clinical relevance of the proposed system by differentiating between suspensions of healthy and sphered RBCs based on high-throughput morphometric analysis. The instrument presented here is a major advancement in the domain of field portable diagnostics as it enables fast and robust quantitative diagnostic testing at the point-of-care.
Resumo:
Disease conditions like malaria, sickle cell anemia, diabetes mellitus, cancer, etc., are known to significantly alter the deformability of certain types of cells (red blood cells, white blood cells, circulating tumor cells, etc.). To determine the cellular deformability, techniques like micropipette aspiration, atomic force microscopy, optical tweezers, quantitative phase imaging have been developed. Many of these techniques have an advantage of determining the single cell deformability with ultrahigh precision. However, the suitability of these techniques for the realization of a deformability based diagnostic tool is questionable as they are expensive and extremely slow to operate on a huge population of cells. In this paper, we propose a technique for high-throughput (800 cells/s) determination of cellular deformability on a single cell basis. This technique involves capturing the image(s) of cells in flow that have undergone deformation under the influence of shear gradient generated by the fluid flowing through the microfluidic channels. Deformability indices of these cells can be computed by performing morphological operations on these images. We demonstrate the applicability of this technique for examining the deformability index on healthy, diabetic, and sphered red blood cells. We believe that this technique has a strong role to play in the realization of a potential tool that uses deformability as one of the important criteria in disease diagnosis.
Resumo:
Multifrequency atomic force microscopy is a powerful nanoscale imaging and characterization technique that involves excitation of the atomic force microscope (AFM) probe and measurement of its response at multiple frequencies. This paper reports the design, fabrication, and evaluation of AFM probes with a specified set of torsional eigen-frequencies that facilitate enhancement of sensitivity in multifrequency AFM. A general approach is proposed to design the probes, which includes the design of their generic geometry, adoption of a simple lumped-parameter model, guidelines for determination of the initial dimensions, and an iterative scheme to obtain a probe with the specified eigen-frequencies. The proposed approach is employed to design a harmonic probe wherein the second and the third eigen-frequencies are the corresponding harmonics of the first eigen-frequency. The probe is subsequently fabricated and evaluated. The experimentally evaluated eigen-frequencies and associated mode shapes are shown to closely match the theoretical results. Finally, a simulation study is performed to demonstrate significant improvements in sensitivity to the second-and the third-harmonic spectral components of the tip-sample interaction force with the harmonic probe compared to that of a conventional probe.
Resumo:
Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.
Resumo:
Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio (CR) network. However, unlike conventional relaying, the state of the links between the relay and the primary receiver affects the choice of the relay. Further, while the optimal amplify-and-forward (AF) relay selection rule for underlay CR is well understood for the peak interference-constraint, this is not so for the less conservative average interference constraint. For the latter, we present three novel AF relay selection (RS) rules, namely, symbol error probability (SEP)-optimal, inverse-of-affine (IOA), and linear rules. We analyze the SEPs of the IOA and linear rules and also develop a novel, accurate approximation technique for analyzing the performance of AF relays. Extensive numerical results show that all the three rules outperform several RS rules proposed in the literature and generalize the conventional AF RS rule.
Resumo:
Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.
Resumo:
We consider information theoretic secret key (SK) agreement and secure function computation by multiple parties observing correlated data, with access to an interactive public communication channel. Our main result is an upper bound on the SK length, which is derived using a reduction of binary hypothesis testing to multiparty SK agreement. Building on this basic result, we derive new converses for multiparty SK agreement. Furthermore, we derive converse results for the oblivious transfer problem and the bit commitment problem by relating them to SK agreement. Finally, we derive a necessary condition for the feasibility of secure computation by trusted parties that seek to compute a function of their collective data, using an interactive public communication that by itself does not give away the value of the function. In many cases, we strengthen and improve upon previously known converse bounds. Our results are single-shot and use only the given joint distribution of the correlated observations. For the case when the correlated observations consist of independent and identically distributed (in time) sequences, we derive strong versions of previously known converses.
Resumo:
The set of all subspaces of F-q(n) is denoted by P-q(n). The subspace distance d(S)(X, Y) = dim(X) + dim(Y)-2dim(X boolean AND Y) defined on P-q(n) turns it into a natural coding space for error correction in random network coding. A subset of P-q(n) is called a code and the subspaces that belong to the code are called codewords. Motivated by classical coding theory, a linear coding structure can be imposed on a subset of P-q(n). Braun et al. conjectured that the largest cardinality of a linear code, that contains F-q(n), is 2(n). In this paper, we prove this conjecture and characterize the maximal linear codes that contain F-q(n).