383 resultados para Electric transport
Resumo:
We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
In this paper we investigate the effect of core-shell structure of Sodium Alginate based hydrogel beads and their size on certain activation threshold concentration of water for applications in swelling and pH sensing. This type of hydrogel experiences diffusive pressure due to transport of certain free charges across its interface with a solvent or electrolyte. This process is essentially a dynamic equilibrium of the electric force field, stress in the polymeric network with cage like structure and molecular diffusion including phase transformation due to pressure imbalance between the hydrogel and its surroundings. The effect of pH of the solvant on the swelling rate of these beads has been studied experimentally. A mathematical model of the swelling process has been developed by considering Nernst-Planck equation representing the migration of mobile ions and Er ions, Poisson equation representing the equilibrium of the electric field and mechanical field equation representing swelling of the gel. An attempt has been made to predict the experimentally observed phenomena using these numerical simulations. It is observed experimentally that certain minimum concentration called activation threshold concentration of the water molecules must be present in the hydrogel in order to activate the swelling process. For the required activation threshold concentration of water in the beads, the pH induced change in the rate of swelling is also investigated. This effect is analyzed for various different core-shell structures of the beads.
Resumo:
In this paper, we address a physics-based analytical model of electric-field-dependent electron mobility (mu) in a single-layer graphene sheet using the formulation of Landauer and Mc Kelvey's carrier flux approach under finite temperature and quasi-ballistic regime. The energy-dependent, near-elastic scattering rate of in-plane and out-of-plane (flexural) phonons with the electrons are considered to estimate mu over a wide range of temperature. We also demonstrate the variation of mu with carrier concentration as well as the longitudinal electric field. We find that at high electric field (>10(6) Vm(-1)), the mobility falls sharply, exhibiting the scattering between the electrons and flexural phonons. We also note here that under quasi-ballistic transport, the mobility tends to a constant value at low temperature, rather than in between T-2 and T-1 in strongly diffusive regime. Our analytical results agree well with the available experimental data, while the methodologies are put forward to estimate the other carrier-transmission-dependent transport properties.
Resumo:
Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
In the present study, impedance and Raman spectroscopy are adopted to probe the nature and extent of disorder to correlate with transport properties in doped polypyrrole (PPy) thin-film devices, synthesized electrochemically at different temperatures. A comparative study of the impedance spectroscopy is performed on PPy devices by both experimental and simulation approach with varying extent of disorder. The impedance measurements of PPy devices are well described by introducing a constant phase element (CPE) (Q) in modified RQ circuit, which accounts for frequency dependence of dielectric response. However, for the PPy grown at lower temperature, an equivalent circuit consisting of two such RQ elements in series is used for successful modelling of the impedance results, which accounts for the depletion region near the electrode. Raman spectroscopy and the de-convoluted spectra are successfully studied to probe the variation in C=C bond stretching and distribution of conjugation length, which relates to disorder in PPy films and the interpretation is well correlated to the impedance results.
Resumo:
The present work involves a computational study of soot (chosen as a scalar which is a primary pollutant source) formation and transport in a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of soot contours resulting from flame vortex interactions has been investigated. More soot was produced when vortex was introduced from the air side in comparison to the fuel side. Also, the soot topography was spatially more diffuse in the case of air side vortex. The computational model was found to be in good agreement with the experimental work previously reported in the literature. The computational simulation enabled a study of various parameters like temperature, equivalence ratio and temperature gradient affecting the soot production and transport. Temperatures were found to be higher in the case of air side vortex in contrast to the fuel side one. In case of fuel side vortex, abundance of fuel in the vortex core resulted in fuel-rich combustion zone in the core and a more discrete soot topography. Besides, the overall soot production was observed to be low in the fuel side vortex. However, for the air side vortex, air abundance in the core resulted in higher temperatures and greater soot production. Probability density functions (PDFs) have been introduced to investigate the spatiotemporal variation of soot yield and transport and their dependence on temperature and acetylene concentration from statistical view point. In addition, the effect of flame curvature on soot production is also studied. The regions convex to fuel stream side witnessed thicker soot layer. All numerical simulations have been carried out on Fluent 6.3.26. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We propose that grand minima in solar activity are caused by simultaneous fluctuations in the meridional circulation and the Babcock-Leighton mechanism for the poloidal field generation in the flux transport dynamo model. We present the following results: (a) fluctuations in the meridional circulation are more effective in producing grand minima; (b) both sudden and gradual initiations of grand minima are possible; (c) distributions of durations and waiting times between grand minima seem to be exponential; (d) the coherence time of the meridional circulation has an effect on the number and the average duration of grand minima, with a coherence time of about 30 yr being consistent with observational data. We also study the occurrence of grand maxima and find that the distributions of durations and waiting times between grand maxima are also exponential, like the grand minima. Finally we address the question of whether the Babcock-Leighton mechanism can be operative during grand minima when there are no sunspots. We show that an alpha-effect restricted to the upper portions of the convection zone can pull the dynamo out of the grand minima and can match various observational requirements if the amplitude of this alpha-effect is suitably fine-tuned.
Resumo:
We consider a scenario where the communication nodes in a sensor network have limited energy, and the objective is to maximize the aggregate bits transported from sources to respective destinations before network partition due to node deaths. This performance metric is novel, and captures the useful information that a network can provide over its lifetime. The optimization problem that results from our approach is nonlinear; however, we show that it can be converted to a Multicommodity Flow (MCF) problem that yields the optimal value of the metric. Subsequently, we compare the performance of a practical routing strategy, based on Node Disjoint Paths (NDPs), with the ideal corresponding to the MCF formulation. Our results indicate that the performance of NDP-based routing is within 7.5% of the optimal.
Resumo:
In several chemical and space industries, small bubbles are desired for efficient interaction between the liquid and gas phases. In the present study, we show that non-uniform electric field with appropriate electrode configurations can reduce the volume of the bubbles forming at submerged needles by up to three orders of magnitude. We show that localized high electric stresses at the base of the bubbles result in slipping of the contact line on the inner surface of the needle and subsequent bubble formation occurs with contact line inside the needle. We also show that for bubble formation in the presence of highly non-uniform electric field, due to high detachment frequency, the bubbles go through multiple coalescences and thus increase the apparent volume of the detached bubbles. (C) 2013 AIP Publishing LLC.
Resumo:
We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 k Omega at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Noninvasive or minimally invasive identification of sentinel lymph node (SLN) is essential to reduce the surgical effects of SLN biopsy. Photoacoustic (PA) imaging of SLN in animal models has shown its promise for clinical use in the future. Here, we present a Monte Carlo simulation for light transport in the SLN for various light delivery configurations with a clinical ultrasound probe. Our simulation assumes a realistic tissue layer model and also can handle the transmission/reflectance at SLN-tissue boundary due to the mismatch of refractive index. Various light incidence angles show that for deeply situated SLNs the maximum absorption of light in the SLN is for normal incidence. We also show that if a part of the diffused reflected photons is reflected back into the skin using a reflector, the absorption of light in the SLN can be increased significantly to enhance the PA signal. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Graphane, hydrogenated graphene, can be patterned into electronic devices by selectively removing hydrogen atoms. The most simple of such devices is the so-called nanoroad, analogous to the graphene nanoribbon, where confinement-and the opening of a gap-is obtained without the need for breaking the carbon bonds. In this work we address the electronic transport properties of such systems considering different hydrogen impurities within the conduction channel. We show, using a combination of density functional theory and non-equilibrium Green's functions, that hydrogen leads to significant changes in the transport properties and in some cases to current polarization.
Resumo:
CuIn1-xAlxSe2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (Delta(SO)) and crystal field (Delta(CF)) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn1-xAlxSe2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A. M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 x 10(-3) A in the dark at 1 V to 3 x 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity R-lambda similar to 920 A W-1, sensitivity S similar to 9.0, specific detectivity D* similar to 3 x 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection.
Resumo:
Magneto-electric composites comprising Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) were fabricated using their fine powders obtained via sol-gel method. X-ray diffraction and scanning electron microscopy results confirmed the single-phase formation of NBT and MFO and the composite nature when these were mixed and sintered at appropriate temperatures. The dielectric constant (epsilon(r)) and dielectric loss (D) decreased with increase in frequency (40-110 MHz). Room temperature magnetization measurements established these composites to be soft magnetic. Further, the nature of these composites were established to be magneto-electric at 300 K. The highest ME response of 0.19 % was observed in 30NBT-70MFO composite. The ME coefficient (alpha) was 240 mV/cm Oe for the same composition. The present study demonstrated the effectiveness of NBT/MFO as a lead-free multiferroic composite and provides an alternative for environment-friendly ME device applications.