52 resultados para variance shadow maps


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce an analytical technique based on queueing networks and Petri nets for making a performance analysis of dataflow computations when executed on the Manchester machine. This technique is also applicable for the analysis of parallel computations on multiprocessors. We characterize the parallelism in dataflow computations through a four-parameter characterization, namely, the minimum parallelism, the maximum parallelism, the average parallelism and the variance in parallelism. We observe through detailed investigation of our analytical models that the average parallelism is a good characterization of the dataflow computations only as long as the variance in parallelism is small. However, significant difference in performance measures will result when the variance in parallelism is comparable to or higher than the average parallelism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by eegr = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s�1. At temperatures below 350°C and in the strain rate range 0.001�0.01 s�1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s�1 and an extrusion ratio of 10ratio1. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s�1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s�1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s�1 and a lower temperature of 425°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In correlation filtering we attempt to remove that component of the aeromagnetic field which is closely related to the topography. The magnetization vector is assumed to be spatially variable, but it can be successively estimated under the additional assumption that the magnetic component due to topography is uncorrelated with the magnetic signal of deeper origin. The correlation filtering was tested against a synthetic example. The filtered field compares very well with the known signal of deeper origin. We have also applied this method to real data from the south Indian shield. It is demonstrated that the performance of the correlation filtering is superior in situations where the direction of magnetization is variable, for example, where the remnant magnetization is dominant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distributed implementation of an algorithm for computing fixed points of an infinity-nonexpansive map is shown to converge to the set of fixed points under very general conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the hot deformation of Zr-2.5Nb (wt-%) in the temperature range 650-950 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. Two different preform microstructures: equiaxed (alpha + beta) and beta transformed have been investigated. For this study, the approach of processing maps has been adopted and their interpretation carried out using the dynamic materials model. The efficiency of power dissipation given by [2m/(m + 1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified in the maps of equiaxed (alpha + beta) and beta transformed preforms. In the case of equiaxed (alpha + beta), the stress-strain curves are steady state and the dynamic recrystallisation domain in the map occurs with a peak efficiency of 45% at 850 degrees C and 0.001 s(-1). On the other hand the beta transformed preform exhibits stress-strain curves with continuous flow softening. The corresponding processing map shows a domain of dynamic recrystallisation occurring by the shearing of alpha platelets followed by globularisation with a peak efficiency of 54% at 750 degrees C and 0.001 s(-1). The characteristics of dynamic recrystallisation are analysed on the basis of a simple model which considers the rates of nucleation and growth of recrystallised gains. Calculations show that these two rates are nearly equal and that the nucleation of dynamic recrystallisation is essentially controlled by mechanical recovery involving the cross-slip of screw dislocations. Analysis of flow instabilities using a continuum criterion revealed that Zi-2.5Nb exhibits flow localisation at temperatures lower than 700 degrees C and strain rates higher than 1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of hot deformation of beta-quenched Zr-2.5Nb-0.5Cu in the temperature range 650-1050 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model. The efficiency of power dissipation given by [2m/(m + 1)], where m is strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. The processing map for Zr-2.5Nb-0.5Cu within (alpha + beta) phase field showed a domain of dynamic recrystallization, occurring by shearing of alpha-platelets followed by spheroidization, with a peak efficiency of 48% at 750 degrees C and 0.001 s(-1). The stress-strain curves in this domain had features of continuous flow softening and all these are similar to that in Zr-2.5Nb alloy. In the beta-phase field, a second domain with a peak efficiency of 47% occurred at 1050 degrees C and 0.001 s(-1) and this domain is correlated with the superplasticity of beta-phase. The beta-deformation characteristics of this alloy are similar to that observed in pure beta-zirconium with large grain size. Analysis of flow instabilities using a continuum criterion revealed that the Zr-2.5Nb-0.5Cu exhibits flow localization at temperatures higher than 800 degrees C and strain rates higher than about 30 s(-1) and that the addition of copper to Zr-2.5Nb reduces its susceptibility to flow instability, particularly in the (alpha + beta) phase field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation characteristics of stainless steel type AISI 3O4 under compression in the temperature range 20 degrees C to 600 degrees C and strain-rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At strain rates less than 5 s(-1), 304 stainless steel exhibits flow localization, whereas dynamic strain aging occurs at intermediate temperatures and below 0.5 s(-1). At room temperatures and strain rates less than 10 s(-1), martensite formation is observed. To avoid the preceding microstructural instabilities, cold and warm working should be carried out at strain rates greater than 5 s(-1). The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the preceding instability features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation characteristics of stainless steel type AISI 316L under compression in the temperature range 20 to 600 degrees C and strain rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At temperatures lower than 100 degrees C and strain rates higher than 0.1 s(-1), 316L stainless steel exhibits flow localization whereas dynamic strain aging (DSA) occurs at intermediate temperatures and below 1 s(-1). To avoid the above flow instabilities, cold working should be carried out at strain rates less than 0.1 s(-1). Warm working of stainless steel type AISI 316L may be done in the temperature and strain rate regime of: 300 to 400 degrees C and 0.001 s(-1) 300 to 450 degrees C and 0.01 s(-1): 450 to 600 degrees C and 0.1 s(-1); 500 degrees C and 1 s(-1) since these regions are free from flow instabilities like DSA and flow localization. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of various milling parameters such as, milling intensity, ball:powder weight ratio and number of balls on the glass forming ability of an elemental blend of composition Ti50Ni50 has been studied by mechanical alloying. In order to understand the results, all the milling parameters have been converted into two energy parameters, namely, impact energy of the ball and the total energy of milling. In a milling map of these two parameters, the conditions for amorphous phase formation have been isolated. A similar exercise has been carried out for Ti50Cu50 as a function of milling time at two milling intensities. The results indicate that a minimum impact energy of the ball and a minimum total energy are essential for amorphization by mechanical alloying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing maps are being developed for use in optimising hot workability and controlling the microstructure of the product. The present investigation deals with the examination to assess the prediction of the processing maps for a 15Cr-15Ni-2.2Mo-0.3Ti austenitic stainless steel using forging and rolling tests at different temperatures in the range of 600-1200 degreesC. The tensile properties of these deformed products were evaluated at room temperature. The influence of the processing conditions, i.e. strain rate and temperature on the tensile properties of the deformed product were analysed to identify the optimum processing parameters. The results have shown good agreement between the regimes exhibited by the map and the properties of the rolled or forged product. The optimum parameters for processing of this steel were identified as rolling or press forging at temperatures above 1050 degreesC to obtain optimum product properties. (C) 2002 Elsevier Science B.V. All rights reserved.