173 resultados para variable utility possibilities set
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
Bond graph is an apt modelling tool for any system working across multiple energy domains. Power electronics system modelling is usually the study of the interplay of energy in the domains of electrical, mechanical, magnetic and thermal. The usefulness of bond graph modelling in power electronic field has been realised by researchers. Consequently in the last couple of decades, there has been a steadily increasing effort in developing simulation tools for bond graph modelling that are specially suited for power electronic study. For modelling rotating magnetic fields in electromagnetic machine models, a support for vector variables is essential. Unfortunately, all bond graph simulation tools presently provide support only for scalar variables. We propose an approach to provide complex variable and vector support to bond graph such that it will enable modelling of polyphase electromagnetic and spatial vector systems. We also introduced a rotary gyrator element and use it along with the switched junction for developing the complex/vector variable's toolbox. This approach is implemented by developing a complex S-function tool box in Simulink inside a MATLAB environment This choice has been made so as to synthesise the speed of S-function, the user friendliness of Simulink and the popularity of MATLAB.
Resumo:
A new approach is proposed to solve for the growth as well as the movement of hydrogen bubbles during solidification in aluminum castings. A level-set methodology has been adopted to handle this multiphase phenomenon. A microscale domain is considered and the growth and movement of hydrogen bubbles in this domain has been studied. The growth characteristics of hydrogen bubbles have been evaluated under free growth conditions in a melt having a hydrogen input caused b solidification occurring around the microdomain.
Resumo:
Aircraft pursuit-evasion encounters in a plane with variable speeds are analysed as a differential game. An engagement-dependent coordinate system confers open-loop optimality on the game. Each aircraft's optimal motion can be represented by extremel trajectory maps which are independent of role, adversary and capture radius. These maps are used in two different ways to construct the feedback solution. Some examples are given to illustrate these features. The paper draws on earlier results and surveys several existing papers on the subject.
Resumo:
This paper describes an algorithm to compute the union, intersection and difference of two polygons using a scan-grid approach. Basically, in this method, the screen is divided into cells and the algorithm is applied to each cell in turn. The output from all the cells is integrated to yield a representation of the output polygon. In most cells, no computation is required and thus the algorithm is a fast one. The algorithm has been implemented for polygons but can be extended to polyhedra as well. The algorithm is shown to take O(N) time in the average case where N is the total number of edges of the two input polygons.
Resumo:
In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.
Resumo:
We present a new algorithm for continuation of limit cycles of autonomous systems as a system parameter is varied. The algorithm works in phase space with an ordered set of points on the limit cycle, along with spline interpolation. Currently popular algorithms in bifurcation analysis packages compute time-domain approximations of limit cycles using either shooting or collocation. The present approach seems useful for continuation near saddle homoclinic points, where it encounters a corner while time-domain methods essentially encounter a discontinuity (a relatively short period of rapid variation). Other phase space-based algorithms use rescaled arclength in place of time, but subsequently resemble the time-domain methods. Compared to these, we introduce additional freedom through a variable stretching of arclength based on local curvature, through the use of an auxiliary index-based variable. Several numerical examples are presented. Comparisons with results from the popular package, MATCONT, are favorable close to saddle homoclinic points.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
We report here that the structural origin of an easily reversible Ge15Te83Si2 glass can be a promising candidate for phase change random access memories. In situ Raman scattering studies on Ge15Te83Si2 sample, undertaken during the amorphous set and reset processes, indicate that the degree of disorder in the glass is reduced from off to set state. It is also found that the local structure of the sample under reset condition is similar to that in the amorphous off state. Electron microscopic studies on switched samples indicate the formation of nanometric sized particles of c-SiTe2 structure. ©2009 American Institute of Physics
Resumo:
Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.
Resumo:
The maximum independent set problem is NP-complete even when restricted to planar graphs, cubic planar graphs or triangle free graphs. The problem of finding an absolute approximation still remains NP-complete. Various polynomial time approximation algorithms, that guarantee a fixed worst case ratio between the independent set size obtained to the maximum independent set size, in planar graphs have been proposed. We present in this paper a simple and efficient, O(|V|) algorithm that guarantees a ratio 1/2, for planar triangle free graphs. The algorithm differs completely from other approaches, in that, it collects groups of independent vertices at a time. Certain bounds we obtain in this paper relate to some interesting questions in the theory of extremal graphs.
Resumo:
A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.