46 resultados para utilization
Resumo:
Utilization of the aryl-beta-glucosides salicin or arbutin in most wild-type strains of E. coli is achieved by a single-step mutational activation of the bgl operon. Shigella sonnei, a branch of the diverse E. coli strain tree, requires two sequential mutational steps for achieving salicin utilization as the bglB gene, encoding the phospho-beta-glucosidase B, harbors an inactivating insertion. We show that in a natural isolate of S. sonnei, transcriptional activation of the gene SSO1595, encoding a phospho-beta-glucosidase, enables salicin utilization with the permease function being provided by the activated bgl operon. SSO1595 is absent in most commensal strains of E. coli, but is present in extra-intestinal pathogens as bgcA, a component of the bgc operon that enables beta-glucoside utilization at low temperature. Salicin utilization in an E. coli bglB laboratory strain also requires a two-step activation process leading to expression of BglF, the PTS-associated permease encoded by the bgl operon and AscB, the phospho-beta-glucosidase B encoded by the silent asc operon. BglF function is needed since AscF is unable to transport beta-glucosides as it lacks the IIA domain involved in phopho-relay. Activation of the asc operon in the Sal(+) mutant is by a promoter-up mutation and the activated operon is subject to induction. The pathway to achieve salicin utilization is therefore diverse in these two evolutionarily related organisms; however, both show cooperation between two silent genetic systems to achieve a new metabolic capability under selection.
Resumo:
Energy is a major constituent of a small-scale industry such as grain mills. Based on a sample survey of several mills spread over Karnataka, a state in India, a number of energy analyses were conducted primarily to establish relationships and secondarily to look at them in more detail. Initially specific energy consumption (SEC) was computed for all industries so as to compare their efficiencies of energy use. A wide disparity exists in SEC among various grain mills. In order to understand the disparities better, regression analyses were performed on the variables energy and production, SEC and production, and energy/SEC with percentage production capacity utilization. The studies show that smaller range industries have lower capacity utilization. This paper also examines the energy savings possible by shifting industries from the lower production ranges to the next higher range (thereby utilizing installed production capacity optimally). This leads to an overall energy capacity saving of 23.12% for the foodgrain sector and 18.67% for the paddy dehusking subgroup. If this is extrapolated to the whole state, we obtain a saving of 55 million kWh.
Resumo:
Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Traffic Engineering has been the prime concern for Internet Service Providers (ISPs), with the main focus being minimization of over-utilization of network capacity even though additional capacity is available which is under-utilized, Furthermore, requirements of timely delivery of digitized audiovisual information raises a new challenge of finding a path meeting these requirements. This paper addresses the issue of (a) distributing load to achieve global efficiency in resource utilization. (b) Finding a path satisfying the real time requirements of, delay and bandwidth requested by the applications. In this paper we do a critical study of the link utilization that varies over time and determine the time interval during which the link occupancy remains constant across days. This information helps in pre-determining link utilization that is useful in balancing load in the network Finally, we run simulations that use a dynamic time interval for profiling traffic and show improvement in terms number of calls admitted/blocked.
Resumo:
This article compares the land use in solar energy technologies with conventional energy sources. This has been done by introducing two parameters called land transformation and land occupation. It has been shown that the land area transformed by solar energy power generation is small compared to hydroelectric power generation, and is comparable with coal and nuclear energy power generation when life-cycle transformations are considered. We estimate that 0.97% of total land area or 3.1% of the total uncultivable land area of India would be required to generate 3400 TWh/yr from solar energy power systems in conjunction with other renewable energy sources.
Resumo:
The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The bglA gene of Escherichia coli encodes phospho-beta-glucosidase A capable of hydrolyzing the plant-derived aromatic beta-glucoside arbutin. We report that the sequential accumulation of mutations in bglA can confer the ability to hydrolyze the related aromatic beta-glucosides esculin and salicin in two steps. In the first step, esculin hydrolysis is achieved through the acquisition of a four-nucleotide insertion within the promoter of the bglA gene, resulting in enhanced steady-state levels of the bglA transcript. In the second step, hydrolysis of salicin is achieved through the acquisition of a point mutation within the bglA structural gene close to the active site without the loss of the original catabolic activity against arbutin. These studies underscore the ability of microorganisms to evolve additional metabolic capabilities by mutational modification of preexisting genetic systems under selection pressure, thereby expanding their repertoire of utilizable substrates.
Resumo:
Tethered satellites deployed from the Space Shuttle have been proposed for diverse applications. A funda- mental issue in the utilization of tethers is quick deployment and retrieval of the attached payload. Inordinate librations of the tether during deployment and retrieval is undesirable. The structural damping present in the system is too low to contain the librations. Rupp [1] proposed to control the tether reel located in the parent spacecraft to alter the tension in the tether, which in turn changes the stiffness and the damping of the system. Baker[2] applied the tension control law to a model which included out of plane motion. Modi et al.[3] proposed a control law that included nonlinear feedback of the out-of plane tether angular rate. More recently, nonlinear feedback control laws based on Liapunov functions have been proposed. Two control laws are derived in [4]. The first is based on partial decomposition of the equations of motion and utilization of a two dimensional control law developed in [5]. The other is based on a Liapunov function that takes into consideration out-of-plane motion. It is shown[4] that the control laws are effective when used in conjunction with out-of-plane thrusting. Fujii et al.,[6] used the mission function control approach to study the control law including aerodynamic drag effect explicitly into the control algorithm.
Resumo:
In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.