35 resultados para updates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study updates the status and conservation of the Endangered Asian elephant Elephas maximus in Cat Tien National Park, Vietnam. Line transect indirect surveys, block surveys for elephant signs, village surveys of elephant-human conflict incidents, guard-post surveys for records of sightings, and surveys of elephant food plants were undertaken during the dry and wet seasons of 2001. A minimum of 11 elephants and a maximum of 15-17 elephants was estimated for c. 500 km2 of the Park and its vicinity. The elephants are largely confined to the southern boundary of the Park and make extensive use of the adjoining La Nga State Forest Enterprises. During the dry season the elephants depend on at least 26 species of wild and cultivated plants, chiefly the fruits of cashew. Most of the villages surveyed reported some elephant-human conflict. Two adult male elephants seem to cover a large area to raid crops, whereas the family groups restrict themselves to a few villages; overall, the conflict is not serious. Since 2001 there have been no reports of any deaths or births of elephants in the Park. We make recommendations for habitat protection and management, increasing the viability of the small population, reducing elephant-human conflicts, and improving the chances of survival of the declining elephants of this Park. The Government has now approved an Action Plan for Urgent Conservation Areas in Vietnam that calls for the establishment of three elephant conservation areas in the country, including Cat Tien National Park.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose two variants of the Q-learning algorithm that (both) use two timescales. One of these updates Q-values of all feasible state-action pairs at each instant while the other updates Q-values of states with actions chosen according to the ‘current ’ randomized policy updates. A sketch of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms for routing on different network topologies are presented and performance comparisons with the regular Q-learning algorithm are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Null dereferences are a bane of programming in languages such as Java. In this paper we propose a sound, demand-driven, inter-procedurally context-sensitive dataflow analysis technique to verify a given dereference as safe or potentially unsafe. Our analysis uses an abstract lattice of formulas to find a pre-condition at the entry of the program such that a null-dereference can occur only if the initial state of the program satisfies this pre-condition. We use a simplified domain of formulas, abstracting out integer arithmetic, as well as unbounded access paths due to recursive data structures. For the sake of precision we model aliasing relationships explicitly in our abstract lattice, enable strong updates, and use a limited notion of path sensitivity. For the sake of scalability we prune formulas continually as they get propagated, reducing to true conjuncts that are less likely to be useful in validating or invalidating the formula. We have implemented our approach, and present an evaluation of it on a set of ten real Java programs. Our results show that the set of design features we have incorporated enable the analysis to (a) explore long, inter-procedural paths to verify each dereference, with (b) reasonable accuracy, and (c) very quick response time per dereference, making it suitable for use in desktop development environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant. (c) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software transactional memory (STM) is a promising programming paradigm for shared memory multithreaded programs. In order for STMs to be adopted widely for performance critical software, understanding and improving the cache performance of applications running on STM becomes increasingly crucial, as the performance gap between processor and memory continues to grow. In this paper, we present the most detailed experimental evaluation to date, of the cache behavior of STM applications and quantify the impact of the different STM factors on the cache misses experienced by the applications. We find that STMs are not cache friendly, with the data cache stall cycles contributing to more than 50% of the execution cycles in a majority of the benchmarks. We find that on an average, misses occurring inside the STM account for 62% of total data cache miss latency cycles experienced by the applications and the cache performance is impacted adversely due to certain inherent characteristics of the STM itself. The above observations motivate us to propose a set of specific compiler transformations targeted at making the STMs cache friendly. We find that STM's fine grained and application unaware locking is a major contributor to its poor cache behavior. Hence we propose selective Lock Data co-location (LDC) and Redundant Lock Access Removal (RLAR) to address the lock access misses. We find that even transactions that are completely disjoint access parallel, suffer from costly coherence misses caused by the centralized global time stamp updates and hence we propose the Selective Per-Partition Time Stamp (SPTS) transformation to address this. We show that our transformations are effective in improving the cache behavior of STM applications by reducing the data cache miss latency by 20.15% to 37.14% and improving execution time by 18.32% to 33.12% in five of the 8 STAMP applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive Gaussian Mixture Models (GMM) have been one of the most popular and successful approaches to perform foreground segmentation on multimodal background scenes. However, the good accuracy of the GMM algorithm comes at a high computational cost. An improved GMM technique was proposed by Zivkovic to reduce computational cost by minimizing the number of modes adaptively. In this paper, we propose a modification to his adaptive GMM algorithm that further reduces execution time by replacing expensive floating point computations with low cost integer operations. To maintain accuracy, we derive a heuristic that computes periodic floating point updates for the GMM weight parameter using the value of an integer counter. Experiments show speedups in the range of 1.33 - 1.44 on standard video datasets where a large fraction of pixels are multimodal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a new algorithm for learning polyhedral classifiers which we call as Polyceptron. It is a Perception like algorithm which updates the parameters only when the current classifier misclassifies any training data. We give both batch and online version of Polyceptron algorithm. Finally we give experimental results to show the effectiveness of our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shoe-mounted inertial sensors offer a convenient way to track pedestrians in situations where other localization systems fail. This tutorial outlines a simple yet effective approach for implementing a reasonably accurate tracker. This Web extra presents the Matlab implementation and a few sample recordings for implementing the pedestrian inertial tracking system using an error-state Kalman filter for zero-velocity updates (ZUPTs) and orientation estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel multi-timescale Q-learning algorithm for average cost control in a Markov decision process subject to multiple inequality constraints. We formulate a relaxed version of this problem through the Lagrange multiplier method. Our algorithm is different from Q-learning in that it updates two parameters - a Q-value parameter and a policy parameter. The Q-value parameter is updated on a slower time scale as compared to the policy parameter. Whereas Q-learning with function approximation can diverge in some cases, our algorithm is seen to be convergent as a result of the aforementioned timescale separation. We show the results of experiments on a problem of constrained routing in a multistage queueing network. Our algorithm is seen to exhibit good performance and the various inequality constraints are seen to be satisfied upon convergence of the algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we investigate the problem of applying a range constraint in order to reduce the systematic heading drift in a foot-mounted inertial navigation system (INS) (motion-tracking). We make use of two foot-mounted INS, one on each foot, which are aided with zero-velocity detectors. A novel algorithm is proposed in order to reduce the systematic heading drift. The proposed algorithm is based on the idea that the separation between the two feet at any given instance must always lie within a sphere of radius equal to the maximum possible spatial separation between the two feet. A Kalman filter, getting one measurement update and two observation updates is used in this algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of finding the best features for value function approximation in reinforcement learning and develop an online algorithm to optimize the mean square Bellman error objective. For any given feature value, our algorithm performs gradient search in the parameter space via a residual gradient scheme and, on a slower timescale, also performs gradient search in the Grassman manifold of features. We present a proof of convergence of our algorithm. We show empirical results using our algorithm as well as a similar algorithm that uses temporal difference learning in place of the residual gradient scheme for the faster timescale updates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Monte Carlo filter, based on the idea of averaging over characteristics and fashioned after a particle-based time-discretized approximation to the Kushner-Stratonovich (KS) nonlinear filtering equation, is proposed. A key aspect of the new filter is the gain-like additive update, designed to approximate the innovation integral in the KS equation and implemented through an annealing-type iterative procedure, which is aimed at rendering the innovation (observation prediction mismatch) for a given time-step to a zero-mean Brownian increment corresponding to the measurement noise. This may be contrasted with the weight-based multiplicative updates in most particle filters that are known to precipitate the numerical problem of weight collapse within a finite-ensemble setting. A study to estimate the a-priori error bounds in the proposed scheme is undertaken. The numerical evidence, presently gathered from the assessed performance of the proposed and a few other competing filters on a class of nonlinear dynamic system identification and target tracking problems, is suggestive of the remarkably improved convergence and accuracy of the new filter. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop iterative diffraction tomography algorithms, which are similar to the distorted Born algorithms, for inverting scattered intensity data. Within the Born approximation, the unknown scattered field is expressed as a multiplicative perturbation to the incident field. With this, the forward equation becomes stable, which helps us compute nearly oscillation-free solutions that have immediate bearing on the accuracy of the Jacobian computed for use in a deterministic Gauss-Newton (GN) reconstruction. However, since the data are inherently noisy and the sensitivity of measurement to refractive index away from the detectors is poor, we report a derivative-free evolutionary stochastic scheme, providing strictly additive updates in order to bridge the measurement-prediction misfit, to arrive at the refractive index distribution from intensity transport data. The superiority of the stochastic algorithm over the GN scheme for similar settings is demonstrated by the reconstruction of the refractive index profile from simulated and experimentally acquired intensity data. (C) 2014 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.