91 resultados para tropical.
Resumo:
Foliage density and leaf area index are important vegetation structure variables. They can be measured by several methods but few have been tested in tropical forests which have high structural heterogeneity. In this study, foliage density estimates by two indirect methods, the point quadrat and photographic methods, were compared with those obtained by direct leaf counts in the understorey of a wet evergreen forest in southern India. The point quadrat method has a tendency to overestimate, whereas the photographic method consistently and ignificantly underestimates foliage density. There was stratification within the understorey, with areas close to the ground having higher foliage densities.
Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the Tropical Indian Ocean
Resumo:
According to recent estimates, the annual total continental runoff into the Bay of Bengal (BoB) is about 2950 km 3, which is more than half that into the entire tropical Indian Ocean (IO). Here we use climatological observations to trace the seasonal pathways of near surface freshwater from BoB runoff and Indonesian Throughflow (ITF) by removing the net contribution from precipitation minus evaporation. North of 20 degrees S, the amount of freshwater from BoB runoff and ITF changes with season in a manner consistent with surface currents from drifters. BoB runoff reaches remote regions of the Arabian Sea; it also crosses the equator in the east to join the ITF. This freshwater subsequently flows west across the southern tropical IO in the South Equatorial Current.
A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis
Resumo:
An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.
Resumo:
This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.
Resumo:
STABLE-ISOTOPE ratios of carbon in soils or lake sediments1-3 and of oxygen and hydrogen in peats4,5 have been found to reflect past moisture variations and hence to provide valuable palaeoclimate records. Previous applications of the technique to peat have been restricted to temperate regions, largely because tropical climate variations are less pronounced, making them harder to resolve. Here we present a deltaC-13 record spanning the past 20 kyr from peats in the Nilgiri hills, southern India. Because the site is at high altitude (>2,000 m above sea level), it is possible to resolve a clear climate signal. We observe the key climate shifts that are already known to have occurred during the last glacial maximum (18 kyr ago) and the subsequent deglaciation. In addition, we observe an arid phase from 6 to 3.5 kyr ago, and a short, wet phase about 600 years ago. The latter appears to correspond to the Mediaeval Warm Period, which previously was believed to be confined to Europe and North America6,7. Our results therefore suggest that this event may have extended over the entire Northern Hemisphere.
Resumo:
Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.
Resumo:
A conceptual model is proposed to explain the observed aperiodicity in the short term climate fluctuations of the tropical coupled ocean-atmosphere system. This is based on the evidence presented here that the tropical coupled ocean-atmosphere system sustains a low frequency inter-annual mode and a host of higher frequency intra-seasonal unstable modes. At long wavelengths, the low frequency mode is dominant while at short wavelengths, the high frequency modes are dominant resulting in the co-existence of a long wave low frequency mode with some short wave intra-seasonal modes in the tropical coupled system. It is argued that due to its long wavelength, the low frequency mode would behave like a linear oscillator while the higher frequency short wave modes would be nonlinear. The conceptual model envisages that an interaction between the low frequency linear oscillator and the high frequency nonlinear oscillations results in the observed aperiodicity of the tropical coupled system. This is illustrated by representing the higher frequency intra-seasonal oscillations by a nonlinear low order model which is then coupled to a linear oscillator with a periodicity of four years. The physical mechanism resulting in the aperiodicity in the low frequency oscillations and implications of these results on the predictability of the coupled system are discussed.
Resumo:
Soils showing changes in plasticity characteristics upon driving form an important group in tropical soils. These changes are attributed to the grouping of particles into aggregates either due to mineralogy or presence of cementing agents and/or pore fluid characteristics. These changes are found to be permanent. In this paper, the effect of these changes leading to changes in index properties is discussed. The coefficient of permeability has been found to be comparable at liquid limit water content for different soils of varying liquid limit values. Permeability is an indirect reflection of microstructure and indicates the flow rate, which depends upon pore geometry. Other mechanical properties like compressibility and shear strength also depend upon pore geometry. These microstructural aspects of liquid limit as a reference state for the analysis of engineering behavior of tropical soils are examined in detail.
Resumo:
Black carbon (BC) aerosol mass concentrations measured using an aethalometer at Anantapur, a semi-arid tropical station in the southern part of peninsular India, from August 2006 to July 2007 are analyzed. Seasonal and diurnal variations of BC in relation to changes in the regional meteorological conditions have been studied along with the mass fraction of BC to the total aerosol mass concentration (M-t) and fine particle mass (FPM) concentration in different months. The data collected during the study period shows that the annual average BC mass concentration at Anantapur is 1.97 +/- 0.12 mu g m(-3). Seasonal variations of BC aerosol mass concentration showed high during the dry (winter and summer) seasons and low during the post-monsoon followed by the monsoon seasons. Diurnal variations of BC aerosols attain a gradual build up in BC concentration from morning and a sharp peak occurs between 07:00 and 09:00 h almost an hour after local sunrise and a broad nocturnal peak from 19:00 to 21:00 h with a minimum in noon hours. The ratio of BC to the fine particle mass concentration was high during the dry season and low during the monsoon season. The regression analysis between BC mass concentration and wind speed indicates that, with increase in wind speeds the BC mass concentrations would decrease and vice-versa. Aerosol BC mass concentration shows a significant positive correlation with total mass concentration (M-t) and aerosol optical depth (ACID, tau(p)) at 500 nm. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
1 Flowering and fruiting phenologies of a tropical dry forest in Mudumalai, southern India, were studied between April 1988 and August 1990. Two sites, a wetter site I receiving 1100mm and a drier site II receiving 600mm of rainfall annually, are compared. A total of 286 trees from 38 species at site I and 167 trees from 27 species at site II was marked for phenological observations. There were 11 species common to the two sites. Several hypotheses relating to the evolution of reproductive phenology are tested. 2 Frequency of species flowering attained a peak at site I during the dry season but at site II, where soil moisture may be limiting during the dry months, the peak was during the wet season. At both sites a majority of species flushed leaves and flowered simultaneously. Among various guilds, the bird-pollinated guild showed distinct dry season flowering, which may be related to better advertisement of large flowers to pollinators during the leafless dry phase. The wind-pollinated guild flowered mainly during the wet season, when wind speeds are highest and favourable for pollen transport. The insect-pollinated guild showed no seasonality in flowering in site I but a wet season flowering in site II. 3 Fruiting frequency attained a peak in site I during the late wet season extending into the early dry season; a time-lag correlation showed that fruiting followed rainfall with a lag of about two months. Site II showed a similar fruiting pattern but this was not statistically significant. The dispersal guilds (animal, wind, and explosive passively-dispersed) did not show any clear seasonality in fruiting, except for the animal-dispersed guild which showed wet season fruiting in site I. 4 Hurlbert's overlap index was also calculated in order to look at synchrony in flowering and fruiting irrespective of climatic (dry and wet month) seasonality. In general, overlap in flowering and fruiting guilds was high because of seasonal aggregation. Among the exceptions, at site II the wind-pollinated flowering guild did not show significant overlap between species although flowering aggregated in the wet season. This could be due to the need to avoid heterospecific pollen transfer. 5 Rarer species tended to flower earlier in the dry season and this again could be an adaptation to avoid the risk of heterospecific pollen transfer or competition for pollinators. The more abundant species flowered mainly during the wet season. Species which flower earlier have larger flowers and, having invested more energy in flowers, also have shorter flower to fruit durations.
Resumo:
As part of an international network of large plots to study tropical vegetation dynamics on a long-term basis, a 50-hectare permanent plot was set up during 1988-89 in the deciduous forests of Mudumalai, southern India. Within this plot 25,929 living woody plants (71 species) above 1 cm DBH (diameter at breast height) were identified, measured, tagged and mapped. Species abundances corresponded to the characteristic log-normal distribution. The four most abundant species (Kydia calycina, Lagerstroemia microcarpa, Terminalia crenulata and Helicteres isora) constituted nearly 56% of total stems, while seven species were represented by only one individual each in the plot. Variance/mean ratios of density showed most species to have clumped distributions. The population declined overall by 14% during the first two years, largely due to elephant and fire-mediated damage to Kydia calycina and Helicteres isora. In this article we discuss the need for large plots to study vegetation dynamics.