66 resultados para time invariant systems
Resumo:
A quasi-geometric stability criterion for feedback systems with a linear time invariant forward block and a periodically time varying nonlinear gain in the feedback loop is developed.
Relationship between the controllability grammian and closed-loop eigenvalues: the single input case
Resumo:
The controllability grammian is important in many control applications. Given a set of closed-loop eigenvalues the corresponding controllability grammian can be obtained by computing the controller which assigns the eigenvalues and then by solving the Lyapunov equation that defines the grammian. The relationship between the controllability grammian, resulting from state feedback, and the closed-loop eigenvalues of a single input linear time invariant (LTI) system is obtained. The proposed methodology does not require the computation of the controller that assigns the specified eigenvalues. The closed-loop system matrix is obtained from the knowledge of the open-loop system matrix, control influence matrix and the specified closed-loop eigenvalues. Knowing the closed-loop system matrix, the grammian is then obtained from the solution of the Lyapunov equation that defines it. Finally the proposed idea is extended to find the state covariance matrix for a specified set of closed-loop eigenvalues (without computing the controller), due to impulsive input in the disturbance channel and to solve the eigenvalue assignment problem for the single input case.
Resumo:
A new scheme for robust estimation of the partial state of linear time-invariant multivariable systems is presented, and it is shown how this may be used for the detection of sensor faults in such systems. We consider an observer to be robust if it generates a faithful estimate of the plant state in the face of modelling uncertainty or plant perturbations. Using the Stable Factorization approach we formulate the problem of optimal robust observer design by minimizing an appropriate norm on the estimation error. A logical candidate is the 2-norm, corresponding to an H�¿ optimization problem, for which solutions are readily available. In the special case of a stable plant, the optimal fault diagnosis scheme reduces to an internal model control architecture.
Resumo:
This paper suggests the use of simple transformations like ÿ=kx, kx2 for second-order nonlinear differential equations to effect rapid plotting of the phase-plane trajectories. The method is particularly helpful in determining quickly the trajectory slopes along simple curves in any desired region of the phase plane. New planes such as the tÿ-x, tÿ2-x are considered for the study of some groups of nonlinear time-varying systems. Suggestions for solving certain higher-order nonlinear systems are also made.
Resumo:
We study the nonequilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their defining features: ground-state degeneracies and associated topological sectors. We present the notion of ``topological blocking,'' experienced by the dynamics due to a mismatch in degeneracies between two phases, and we argue that the dynamic evolution of the quench depends strongly on the topological sector being probed. We demonstrate this interplay between quench and topology in models stemming from two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Through nonlocal maps of each of these systems, we effectively study spinless fermionic p-wave paired topological superconductors. Confining the systems to ring and toroidal geometries, respectively, enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that various features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed, in particular, the overlap between the time-evolved initial ground state and an appropriate low-energy state of the final Hamiltonian. While most of our study is confined to translationally invariant systems, where momentum is a convenient quantum number, we briefly consider the effect of disorder and illustrate how this can influence the quench in a qualitatively different way depending on the topological sector considered.
Resumo:
Time-varying linear prediction has been studied in the context of speech signals, in which the auto-regressive (AR) coefficients of the system function are modeled as a linear combination of a set of known bases. Traditionally, least squares minimization is used for the estimation of model parameters of the system. Motivated by the sparse nature of the excitation signal for voiced sounds, we explore the time-varying linear prediction modeling of speech signals using sparsity constraints. Parameter estimation is posed as a 0-norm minimization problem. The re-weighted 1-norm minimization technique is used to estimate the model parameters. We show that for sparsely excited time-varying systems, the formulation models the underlying system function better than the least squares error minimization approach. Evaluation with synthetic and real speech examples show that the estimated model parameters track the formant trajectories closer than the least squares approach.
Resumo:
The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.
Resumo:
The problem of identification of parameters of a beam-moving oscillator system based on measurement of time histories of beam strains and displacements is considered. The governing equations of motion here have time varying coefficients. The parameters to be identified are however time invariant and consist of mass, stiffness and damping characteristics of the beam and oscillator subsystems. A strategy based on dynamic state estimation method, that employs particle filtering algorithms, is proposed to tackle the identification problem. The method can take into account measurement noise, guideway unevenness, spatially incomplete measurements, finite element models for supporting structure and moving vehicle, and imperfections in the formulation of the mathematical models. Numerical illustrations based on synthetic data on beam-oscillator system are presented to demonstrate the satisfactory performance of the proposed procedure.
Resumo:
Utilization bounds for Earliest Deadline First(EDF) and Rate Monotonic(RM) scheduling are known and well understood for uniprocessor systems. In this paper, we derive limits on similar bounds for the multiprocessor case, when the individual processors need not be identical. Tasks are partitioned among the processors and RM scheduling is assumed to be the policy used in individual processors. A minimum limit on the bounds for a 'greedy' class of algorithms is given and proved, since the actual value of the bound depends on the algorithm that allocates the tasks. We also derive the utilization bound of an algorithm which allocates tasks in decreasing order of utilization factors. Knowledge of such bounds allows us to carry out very fast schedulability tests although we are constrained by the fact that the tests are sufficient but not necessary to ensure schedulability.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. Solution of the matrix equation, involving unknown controller gams, open-loop system matrices, and desired eigenvalues and eigenvectors, results hi the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether.
Resumo:
The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,
Resumo:
The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.
Resumo:
We consider a stochastic differential equation (SDE) model of slotted Aloha with the retransmission probability as the associated parameter. We formulate the problem in both (a) the finite horizon and (b) the infinite horizon average cost settings. We apply the algorithm of 3] for the first setting, while for the second, we adapt a related algorithm from 2] that was originally developed in the simulation optimization framework. In the first setting, we obtain an optimal parameter trajectory that prescribes the parameter to use at any given instant while in the second setting, we obtain an optimal time-invariant parameter. Our algorithms are seen to exhibit good performance.
Resumo:
The notion of the 1-D analytic signal is well understood and has found many applications. At the heart of the analytic signal concept is the Hilbert transform. The problem in extending the concept of analytic signal to higher dimensions is that there is no unique multidimensional definition of the Hilbert transform. Also, the notion of analyticity is not so well under stood in higher dimensions. Of the several 2-D extensions of the Hilbert transform, the spiral-phase quadrature transform or the Riesz transform seems to be the natural extension and has attracted a lot of attention mainly due to its isotropic properties. From the Riesz transform, Larkin et al. constructed a vortex operator, which approximates the quadratures based on asymptotic stationary-phase analysis. In this paper, we show an alternative proof for the quadrature approximation property by invoking the quasi-eigenfunction property of linear, shift-invariant systems. We show that the vortex operator comes up as a natural consequence of applying this property. We also characterize the quadrature approximation error in terms of its energy as well as the peak spatial-domain error. Such results are available for 1-D signals, but their counter part for 2-D signals have not been provided. We also provide simulation results to supplement the analytical calculations.