85 resultados para the energy per baryon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the problem of power management and throughput maximization for energy neutral operation when using Energy Harvesting Sensors (EHS) to send data over wireless links. It is assumed that the EHS are designed to transmit data at a constant rate (using a fixed modulation and coding scheme) but are power-controlled. A framework under which the system designer can optimize the performance of EHS when the channel is Rayleigh fading is developed. For example, the highest average data rate that can be supported over a Rayleigh fading channel given the energy harvesting capability, the battery power storage efficiency and the maximum allowed transmit energy per slot is derived. Furthermore, the optimum transmission scheme that guarantees a particular data throughput is derived. The usefulness of the framework developed is illustrated through simulation results for specific examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a synthesis of assessment of sustainable biomass production potential in six Asian countries-China, India, Malaysia, Philippines, Sri Lanka and Thailand, and is based on the detailed studies carried out in these countries under the Asian Regional Research Programme in Energy, Environment and Climate (ARRPEEC). National level studies were undertaken to estimate land availability for biomass production, identify and evaluate the biomass production options in terms of yield per hectare and financial viability, estimate sustainable biomass production for energy, and estimate the energy potential of biomass production in the six Asian countries. Sustainable biomass production from plantation is estimated to be in the range of 182.5-210.5, 62-310, 0.4-1.7, 3.7-20.4, 2.0-9.9 and 11.6-106.6 Mt yr(-1) for China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. The maximum annual electricity generation potential, using advanced technologies, from the sustainable biomass production is estimated to be about 27, 114, 4.5, 79, 254 and 195 percentage of the total electricity generation in year 2000 in China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. Investment cost for bioenergy production varies from US$381 to 1842 ha(-1) in the countries considered in this study; investment cost for production of biomass varies from US$5.1 to 23 t(-1). (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard molar Gibbs energies of formation of YbPt3 and LuPt3 intermetallic compounds have been measured in the temperature range 880 K to 1100 K using the solid-state cells:View the MathML source and View the MathML source The trifluoride of Yb is not stable in equilibrium with Yb or YbPt3. The results can be expressed by the equations: View the MathML source View the MathML source The standard molar Gibbs energy of formation of LuPt3 is −41.1 kJ · mol−1 more negative than that for YbPt3 at 1000 K. Ytterbium is divalent in the pure metal and trivalent in the intermetallic YbPt3. The energy required for the promotion of divalent Yb to the trivalent state is responsible for the less negative ΔfGmo of YbPt3. The enthalpies of formation of the two intermetallics are in reasonable agreement with Miedema's model. Because of the extraordinary stability of these compounds it is possible to reduce oxides of Yb and Lu with hydrogen in the presence of platinum at View the MathML source. The equilibrium chemical potential of oxygen corresponding to the reduction of Yb2O3 and Lu2O3 by hydrogen in the presence of platinum is presented in the form of an Ellingham diagram.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper, we describe a power-efficient architecture for redundant execution on chip multiprocessors (CMPs) which when coupled with our per-core dynamic voltage and frequency scaling (DVFS) algorithm significantly reduces the energy overhead of redundant execution without sacrificing performance. Our evaluation shows that this architecture has a performance overhead of only 0.3% and consumes only 1.48 times the energy of a non-fault-tolerant baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem and related earlier work All the above problems involve the passage of a long chain molecule, through a region in space, where the free energy per segment is higher, thus effectively presenting a barrier for the motion of the molecule. This is what we refer to as the Kramers proble...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesion can cause energy losses in asperities or particles coming into dynamic contact resulting in frictional dissipation, even if the deformation occurring is purely elastic. Such losses are of special significance in impact of nanoparticles and friction between surfaces under low contact pressure to hardness ratio. The objective of this work is to study the effect of adhesion during the normal impact of elastic spheres on a rigid half-space, with an emphasis on understanding the mechanism of energy loss. We use finite element method for modeling the impact phenomenon, with the adhesion due to van der Waals force and the short-range repulsion included as body forces distributed over the volume of the sphere. This approach, in contrast with commonly used surface force approximation, helps to model the interactions in a more precise way. We find that the energy loss in impact of elastic spheres is negligible unless there are adhesion-induced instabilities. Significant energy loss through elastic stress waves occurs due to jump-to-contact and jump-out-of-contact instabilities and can even result in capture of the elastic sphere on the half-space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a `footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by similar to 50% in generator potentials, to similar to 3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the effect of electric field on energy absorption capacity of carbon nanotube forests (CNTFs), comprising of vertically aligned multiwalled carbon nanotubes, under both quasistatic (strain rate, (epsilon) over dot = 10(-3) s(-1)) and dynamic ((epsilon) over dot = similar to 10(3) s(-1)) loading conditions. Under quasistatic condition, the CNTFs were cyclically loaded and unloaded while electric field was applied along the length of carbon nanotube (CNT) either throughout the loading cycle or explicitly during either the loading or the unloading segment. The energy absorbed per cycle by CNTF increased monotonically with electric field when the field was applied only during the loading segment: A 7 fold increase in the energy absorption capacity was registered at an electric field of 1 kV/m whereas no significant change in it was noted for other schemes of electro-mechanical loading. The energy absorption capacity of CNTF under dynamic loading condition also increased monotonically with electric field; however, relative to the quasistatic condition, less pronounced effect was observed. This intriguing strain rate dependent effect of electric field on energy absorption capacity of CNTF is explained in terms of electric field induced strengthening of CNTF, originating from the time dependent electric field induced polarization of CNT. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a calculation of the inertial mass of a moving vortex in cuprate superconductors. This is a poorly known basic quantity of obvious interest in vortex dynamics. The motion of a vortex causes a dipolar density distortion and an associated electric field which is screened. The energy cost of the density distortion as well as the related screened electric field contributes to the vortex mass, which is small because of efficient screening. As a preliminary, we present a discussion and calculation of the vortex mass using a microscopically derivable phase-only action functional for the far region which shows that the contribution from the far region is negligible and that most of it arises from the (small) core region of the vortex. A calculation based on a phenomenological Ginzburg-Landau functional is performed in the core region. Unfortunately such a calculation is unreliable; the reasons for it are discussed. A credible calculation of the vortex mass thus requires a fully microscopic non-coarse-grained theory. This is developed, and results are presented for an s-wave BCS-like gap, with parameters appropriate to the cuprates. The mass, about 0.5m(e) per layer, for a magnetic field along the c axis arises from deformation of quasiparticle states bound in the core and screening effects mentioned above. We discuss earlier results, possible extensions to d-wave symmetry, and observability of effects dependent on the inertial mass. [S0163-1829(97)05534-3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless adhoc networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem - the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node. In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels, where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information (CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a c- - orresponding factored class of control poli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissipation rate of turbulent kinetic energy (epsilon) is a key parameter for mixing in surface aerators. In particular, determination epsilon across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix (R) calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.