46 resultados para target costing
Resumo:
It is shown that the asymmetric chiral gauging of the WZW models give rise to consistent string backgrounds. The target space structure of the chiral gauged SL(2,R) WZW model, with the gauging of subgroups SO(1, 1) in the left and U(1) in the right moving sector, is obtained. We then analyze the symmetries of the background and show the presence of a non-trivial isometry in the canonical parametrization of the WZW model. Using these results, the equivalence of the asymmetric models with the symmetric ones is demonstrated.
Resumo:
Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by reactive radio frequency (rf) magnetron sputtering from Li3PO4 powder compact target. High deposition rates and ease of manufacturing powder target compared with conventional ceramic Li3PO4 targets offer flexibility in handling and reduce the cost associated. Rf power density varied from 1.7 Wcm(-2) to 3 Wcm(-2) and N-2 flow from 10 to 30 sccm for a fixed substrate to target distance of 4 cm for best ionic conductivity. The surface chemical analysis done by X-ray photoelectron spectroscopy showed incorporation of nitrogen into the film as both triply, NE and doubly. Nd coordinated form. With increased presence of NE, ionic conductivity of LiPON was found to be increasing. The electrochemical impedance spectroscopy of LiPON films confirmed an ionic conductivity of 1.1 x 10(-6) Scm(-1) for optimum rf power and N-2 flow conditions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Inflammatory processes are involved in the pathogenesis and/or progression of acute central nervous system (CNS) infection, traumatic brain injury and neurodegenerative disorders among others indicating the need for novel strategies to limit neuroinflammation. Eicosanoids including leukotrienes, particularly leukotriene B-4 (LTB4) are principle mediator(s) of inflammatory response, initiating and amplifying the generation of cytokines and chemokines. Cytochrome P450 (Cyp), a family of heme proteins mediate metabolism of xenobiotics and endogenous compounds, such as eicosanoids and leukotrienes. Cytochrome P4504F (Cyp4f) subfamily includes five functional enzymes in mouse. We cloned and expressed the mouse Cyp4f enzymes, assayed their relative expression in brain and examined their ability to hydroxylate the inflammatory cascade prompt LTB4 to its inactive 20-hydroxylated product. We then examined the role of Cyp4fs in regulating inflammatory response in vitro, in microglial cells and in vivo, in mouse brain using lipopolysacharide (LPS), as a model compound to generate inflammatory response. We demonstrate that mouse brain Cyp4fs are expressed ubiquitously in several cell types in the brain, including neurons and microglia, and modulate inflammatory response triggered by LPS, in vivo and in microglial cells, in vitro through metabolism of LTB4 to the inactive 20-hydroxy LTB4. Chemical inhibitor or shRNA to Cyp4fs enhance and inducer of Cyp4fs attenuates inflammatory response. Further, induction of Cyp4f expression lowers LTB4 levels and affords neuroprotection in microglial cells or mice exposed to LPS. Thus, catalytic activity of Cyp4fs is a novel target for modulating neuroinflammation through hydroxylation of LTB4. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
DNA topoisomerases are ubiquitous group of enzymes altering the topology of DNA by concerted breakage and rejoining of the phosphodiester backbone of DNA. The enzymes are classified based on the pattern of DNA cleavage. Type IA enzymes found in all bacteria nick the DNA and attach themselves covalently to the 5' side of the nick during the first transesterification reaction. Most of the information on this group of enzymes comes from studies with E. coli topoisomerase I and III. Members of type IA group are single subunit Zn++ metalloenzymes recognizing single stranded DNA without high degree of sequence specificity during relaxation reaction of negatively super coiled DNA. So far no inhibitors are known for this group of enzymes inspite of their important role in maintaining homeostasis of DNA topology. Molecular characterization of DNA topoisomerase I from mycobacteria has revealed some of the important features of type IA enzymes hitherto unknown and provide scope for identifying novel inhibitors. The present review describes the recent developments in the area summarizing the distinctive features of mycobacterial topoisomerase I. The enzyme has several properties not shared by either type IA or 113 enzymes with respect to DNA binding, recognition, sequence specificity and interaction pattern. The physiological basis of the unusual features is discussed. The unique properties described would aid in developing the enzyme as a target molecule in pharmaceutical design. In addition, the findings lead to address some fundamental questions on the intracellular role of topoisomerase I in the biology of mycobacteria which are one of the most formidable group of pathogenic organisms.
Resumo:
GH3 proteins control auxin homeostasis by inactivating excess auxin as conjugates of amino acids and sugars and thereby controlling cellular bioactive auxin. Since auxin regulates many aspects of plant growth and development, regulated expression of these genes offers a mechanism to control various developmental processes. OsMGH3/OsGH3-8 is expressed abundantly in rice florets and is regulated by two related and redundant transcription factors, OsMADS1 and OsMADS6, but its contribution to flower development is not known. We functionally characterize OsMGH3 by overexpression and knock-down analysis and show a partial overlap in these phenotypes with that of mutants in OsMADS1 and OsMADS6. The overexpression of OsMGH3 during the vegetative phase affects the overall plant architecture, whereas its inflorescence-specific overexpression creates short panicles with reduced branching, resembling in part the effects of OsMADS1 overexpression. In contrast, the down-regulation of endogenous OsMGH3 caused phenotypes consistent with auxin overproduction or activated signaling, such as ectopic rooting from aerial nodes. Florets in OsMGH3 knock-down plants were affected in carpel development and pollen viability, both of which reduced fertility. Some of these floret phenotypes are similar to osmads6 mutants. Taken together, we provide evidence for the functional significance of auxin homeostasis and its transcriptional regulation during rice panicle branching and floret organ development.
Resumo:
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Hepatitis C virus (HCV), a member of Flaviviridae, encoding a positive-sense single-stranded RNA translates by cap-independent mechanism using the internal ribosome entry site (IRES) present in the 5' UTR of the virus. The IRES has complex stem loop structures and is capable of recruiting the 40S ribosomal subunit in a factor-independent fashion. As the IRES sequence is highly conserved throughout the HCV genotypes and the translation is the first obligatory step of the HCV life cycle, the IRE'S-mediated translation, or more specifically, the ribosome HCV RNA interaction is an attractive target to design effective antivirals. This article will focus on the mechanism of the HCV IRES translation and the various ways in which the interaction of ribosome and IRES has been targeted.
Resumo:
Quest for new drug targets in Plasmodium sp. has underscored malonyl CoA:ACP transacylase (PfFabD) of fatty acid biosynthetic pathway in apicoplast. In this study, a piggyback approach was employed for the receptor deorphanization using inhibitors of bacterial FabD enzymes. Due to the lack of crystal structure, theoretical model was constructed using the structural details of homologous enzymes. Sequence and structure analysis has localized the presence of two conserved pentapeptide motifs: GQGXG and GXSXG and five key invariant residues viz., Gln109, Ser193, Arg218, His305 and Gln354 characteristic of FabD enzyme. Active site mapping of PfFabD using substrate molecules has disclosed the spatial arrangement of key residues in the cavity. As structurally similar molecules exhibit similar biological activities, signature pharmacophore fingerprints of FabD antagonists were generated using 0D-3D descriptors for molecular similarity-based cluster analysis and to correlate with their binding profiles. It was observed that antagonists showing good geometrical fitness score were grouped in cluster-1, whereas those exhibiting high binding affinities in cluster-2. This study proves important to shed light on the active site environment to reveal the hotspot for binding with higher affinity and to narrow down the virtual screening process by searching for close neighbors of the active compounds.
Resumo:
Tungsten incorporated diamond like carbon (W-DLC) nanocomposite thin films with variable fractions of tungsten were deposited by using reactive biased target ion beam deposition technique. The influence of tungsten incorporation on the microstructure, surface topography, mechanical and tribological properties of the DLC were studied using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. Atomic force microscope (AFM), transmission electron microscopy (TEM), nano-indentation and nano-scratch tests. The amount of W in films gets increases with increasing target bias voltage and most of the incorporated W reacts with carbon to form WC nanoclusters. Using TEM and FFT pattern, it was found that spherical shaped WC nanoclusters were uniformly dispersed in the DLC matrix and attains hexagonal (W2C) crystalline structure at higher W concentration. On the other hand, the incorporation of tungsten led to increase the formation of C-sp(2) hybridized bonding in DLC network and which is reflected in the hardness and elastic modulus of W-DLC films. Moreover, W-DLC films show very low friction coefficient and increased adhesion to the substrate than the DLC film, which could be closely related to its unique nanostructure of the W incorporated thin films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative `Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed `3interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.