54 resultados para synchronic unity of consciousness
Resumo:
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
We present a report of our analysis of wave vector dependence of the static dielectric function of a dipolar liquid obtained by a microscopic calculation. At low values of the wave vector (k), the longitudinal dielectric function ϵ(k) increases with k, in contradiction to some assumptions reported in the literature. As the value of k is increased, ϵ(k) diverges at a critical value kc which depends on the value of the long wavelength static dielectric constant (ϵ0) of the liquid. The dielectric function is negative for values of k greater than kc. At large values of k, the calculated ϵ(k) fails to attain the limiting value of unity. We attribute this result to the failure of the point dipole assumption made in the evaluation of the polarization correlation function required by the theory. The behavior of ϵ(k) for the dipolar liquid is compared with that of one component plasma for which reliable results can be obtained over the full range of wave vectors. For both systems, the stability conditions are fulfilled at all values of k. A plausible explanation of this rather exotic behavior of ϵ(k) is given.
Resumo:
Five different shaped weirs were designed and pertinent data for their use are given. One of these weir shapes had the least “sharp edge” at the junction of the base weir and “complementary weir.” Two other types of weirs had equal slopes at the junction of the base weir and complementary weir. Another shape, for which neither the indication accuracy was constant nor the slope was equal at the junction of the base weir and complementary weir, was also tested. The results of the four weir shapes hydraulically tested give consistent values for the coefficient of discharge varying between 0.625 to 0.631. The indication accuracies of all the previously designed linear proportional weirs (includig Sutro weir) are neither constant nor unity, as is believed.
Resumo:
The energy input to giant molecular clouds is recalculated, using the proper linearized equations of motion, including the Coriolis force and allowing for changes in the guiding center. Perturbation theory yields a result in the limit of distant encounters and small initial epicyclic amplitudes. Direct integration of the motion equations allows the strong encounter regime to be studied. The present perturbation theory result differs by a factor of order unity from that of Jog and Ostriker (1988). The result of present numerical integrations for the 2D (planar) velocity dispersion is presented. The accretion rate for a molecular cloud in the Galactic disk is calculated.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
The a.c. conductivity of CaF2 samples containing a fine dispersion of CaO particles has been measured in the temperature range 630 to 1100 K. The conductivity of the dispersed solid electrolyte is two orders of magnitude higher than that for pure polycrystalline CaF2 in the middle of the temperature range. Transport measurements on pure single crystals of CaF2 and polycrystalline samples, with and without CaO dispersion, using Fe+FeO and pure Fe as electrodes, clearly indicate that fluorine ions are the only migrating ionic species with a transport number of almost unity, contrary to the suggestion of Chou and Rapp [1, 2]. The enhanced conductivity of the dispersed solid electrolyte probably arises from two effects. A small solubility of oxygen in CaF2 results in an increase in the fluorine vacancy concentration and conductivity. Adsorption of fluorine ions on the surface of the dispersed particles of CaO results in a space charge region around each particle with enhanced conductivity. Measurements on a galvanic cell incorporating CaF2 as the solid electrolyte and oxide electrodes show that the e.m.f. is a function of the activity of CaO at the electrode/electrolyte interface. The response to an oxygen potential gradient is, therefore, through an exchange reaction, which establishes an equivalent fluorine potential at the electrode/electrolyte interface.
Resumo:
This paper reports on the numerical study of the linear stability of laminar premixed flames under zero gravity. The study specifically addresses the dependence of stability on finite rate chemistry with low activation energy and variable thermodynamic and transport properties. The calculations show that activation energy and details of chemistry play a minor role in altering the linear neutral stability results from asymptotic analysis. Variable specific heat makes a marginal change to the stability. Variable transport properties on the other hand tend to substantially enhance the stability from critical wave number of about 0.5 to 0.20. Also, it appears that the effects of variable properties tend to nullify the effects of non-unity Lewis number. When the Lewis number of a single species is different from unity, as will happen in a hydrogen-air premixed flame, the stability results remain close to that of unity Lewis number.
Resumo:
Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.
Resumo:
In this paper, we present the design and bit error performance analysis of weighted linear parallel interference cancellers (LPIC) for multicarrier (MC) DS-CDMA systems. We propose an LPIC scheme where we estimate (and cancel) the multiple access interference (MAI) based on the soft outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation; these weights are so chosen to maximize the signal-to-interference ratios at the individual subcarrier outputs. For this weighted LPIC scheme, using an approach involving the characteristic function of the decision variable, we derive exact bit error rate (BER) expressions for different cancellation stages. Using the same approach, we also derive exact BER expressions for the matched filter (MF) and decorrelating detectors for the considered MC DS-CDMA system. We show that the proposed weighted LPIC scheme performs better than the MF detector and the conventional LPIC (where the weights are taken to be unity), and close to the decorrelating detector.
Resumo:
The BEBO (bond energy-bond order) model of Johnston and Parr is examined with the results of ab initio MO calculations on a series of metathetic reactions which involve hydrogen transfer. Energies are calculated at the 6-31G**/PMP2 = full//6-31G** level while the bond orders are estimated using the 6-31G** basis set with the geometry optimisation at the single configuration unrestricted Hartree-Fock frame. Our analysis reveals that the bond-order exponent in the BEBO theory is greater than unity for the reaction series and the entropy term becomes implicitly present in the BEBO model.
Resumo:
A little more than sixty years ago, the late L. A. Ramdas discovered a curious atmospheric phenomenon which had not been satisfactorily explained till recently. The phenomenon is the observation of a temperature minimum some 20-50 cm above bare soil on calm, clear nights. The first reports of these observations were treated with much scepticism, as the prevailing view was that the nocturnal temperature minimum always occurs at ground. In the present address the history of work on the lifted temperature minimum is traced and a new explanation is offered. It is emphasized that in this as well as many other phenomena, it is important to account for surfaces that are not perfectly black radiatively, i.e. those whose emissivity is not unity.
Resumo:
In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.
Resumo:
New composition gradient solid electrolytes have been designed for application in high temperature solid-state galvanic sensors and in thermodynamic measurements. The functionally gradient electrolyte consists of a solid solution between two or more ionic conductors with a common ion and gradual variation in composition of the other ionic species. Unequal rates of migration of the ions, caused by the presence of the concentration gradient, may result in the development of space charge, manifesting as diffusion potential. Presented is a theoretical analysis of the EMF of cells incorporating gradient solid electrolytes. An analytical expression is derived for diffusion potential, using the thermodynamics of irreversible processes, for different types of concentration gradients and boundary conditions at the electrode/electrolyte interfaces. The diffusion potential of an isothermal cell incorporating these gradient electrolytes becomes negligible if there is only one mobile ion and the transport numbers of the relatively immobile polyionic species and electrons approach zero. The analysis of the EMF of a nonisothermal cell incorporating a composition gradient solid electrolyte indicates that the cell EMF can be expressed in terms of the thermodynamic parameters at the electrodes and the Seebeck coefficient of the gradient electrolyte under standard conditions when the transport number of one of the ions approaches unity.