33 resultados para sugar and ethanol companies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, Platinum (Pt)/Copper (II) oxide (CuO) thin film based ethanol sensors were fabricated by sputtering of Pt in varying concentrations over pre-sputtered nanostructured CuO films. The responses of these sensors as a function of Pt concentrations were studied using operating temperature modulation (200-450 °C) and ethanol concentration modulation (100-2500 ppm). During these modulations, it was found that the sensing response was maximum at operating temperature near 400 °C for all the samples irrespective of the Pt concentration dispersed over them. Moreover, the sensing behavior improves for lower Pt concentration (Pt/CuO-60s) and deteriorates for higher Pt concentration (Pt/CuO-120s). In comparison with bare CuO sample, the sensitivity of Pt/CuO-60s increased up to 22% in the linear range and 33% for maximum ethanol concentration. Hence, the well dispersed optimum Pt additive concentration improves the overall sensing behavior including sensitivity, linear working range and response as well as recovery time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tiruvadi Sambasiva Venkatraman (TSV) was a plant breeder. In response to a call from Pundit Madan Mohan Malaviya, he made it his mission to develop high-yielding varieties of sugarcane for manufacturing sugar and making it available as a sweetening agent and an energy source for the malnourished children of India. Using Saccharum officinarum, then under cultivation in India, as the female parent, he artificially fertilized it with pollen from S. barberi, which grew wild in Coimbatore. After 4-5 recurrent backcrossings of S. officinarum Chi wild Sorghum spontaneum with S. officinarum as the female parent, TSV selected the `rare' interspecies hybrid cane varieties that resembled sugarcane and had approximately 2.5 cm thick juicy stems containing 16-18% sucrose - nearly 35 times more than what occurred in parent stocks. The hybrid canes matured quickly, were resistant to waterlogging, drought, and to the red-rot disease caused by Glomerella tucumanensis (Sordariomycetes: Glomerellaceae), and to the sereh-virus disease. Most importantly, they were amenable for propagation using stem cuttings. In recognition of the development of high-yielding sugarcane varieties, TSV was conferred the titles Rao Bahadur, Rao Sahib, and Sir by the British Government, and Padma Bhushan by the Republic of India. In the next few decades, consequent to TSV's work, India turned into the second largest sugar producer in the world, after Brazil. The hybrid sugarcane varieties developed are the foundational stocks for new sugarcane x bamboo hybrids, and for possible resistance to Puccinia megalocephala (Pucciniomycetes: Pucciniaceae) and Ustilago scitaminea (Ustilaginomycetes: Ustilaginaceae) using molecular techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports results of an experimental investigation of airblast spray of water and ethanol in crossflow. Laser shadowgraphy and Particle/Droplet Imaging Analysis (PDIA) are used to derive spray trajectory and drop size information while Particle Tracking Velocimetry (PTV) is used to measure droplet velocities. A new phenomenon of spray bifurcation is observed for low Gas to Liquid Ratio (GLR) cases. The reasons for the spatial bifurcation can be attributed to a combination of reasons. These are (a) presence of large ligaments and droplets in the near-nozzle region for low GLRs (b) secondary breakup experienced by ligaments/droplets leading to formation of a large number of small droplets, and (c) the crossflow causing differential dispersion of the small and large droplets. A novel correlation for spray trajectory is proposed incorporating the momentum ratio and liquid surface tension. This correlation is shown to be effective in predicting the non-linear spray trajectory over a large range of conditions for not only water but ethanol and Jet-A also. It is observed that the larger droplets penetrate further into the crossflow, in the direction of injection. Thus, with increase in height of the measurement location from the injection plane, the droplet Sauter Mean Diameter (SMD) is found to increase. Moreover, as the droplets travel downstream in the crossflow direction, the droplet SMD is observed to decrease. The effect of drag is assessed by comparing velocity of different sizes of droplets at various locations. Smaller droplets are entrained into the crossflow at much lower elevations, whereas larger droplets tend to penetrate further into the crossflow. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The winged-bean tuber lectin binds to N-dansyl(5-dimethylaminonaphthalene-1-sulphonic acid)galactosamine, leading to a 12.5-fold increase in dansyl fluorescence with a concomitant 25 nm blue-shift in the emission maximum. The enhancement of fluorescence intensity was completely reversed by the addition of methyl α-galactopyranoside. The lectin has two binding sites per molecule for this fluorescent sugar and an association constant of 2.59 · 105 M−1 at 25° C. The binding of N-dansylgalactosamine to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of d-galactose. Studies with other sugars indicate that a hydrophobic substituent with α-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are also critical for sugar binding to this lectin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sequence specific requirement for B----Z transition in solution was examined in d(CGTGCGCACG), d(CGTACGTACG), d(ACGTACGT) in presence of various Z-inducing factors. Conformational studies show that inspite of the alternating nature of purines and pyrimidines, the aforementioned sequences do not undergo B----Z transition under the influence of NaCl, hexamine cobalt chloride and ethanol. A comparison with the crystal structures of an assorted array of purine and pyrimidine sequences show that the sequence requirement for B----Z transition is much more stringent in solution as compared to the solid state. The disruptive influence of AT base pairs in B to Z transition is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years The helicopter research is divided into the following parts health monitoring smart rotor design optimization control helicopter rotor dynamics active control of structural response (ACSR) and helicopter design and development Aspects of health monitoring and smart rotor are discussed in detail Further work needed and areas for international collaboration are pointed out Design/methodology/approach - The archival journal papers on helicopter engineering published from India are obtained from databases and are studied and discussed The contribution of the basic research to the state of the art in helicopter engineering science is brought out Findings - It is found that strong research capabilities have developed in rotor system health and usage monitoring rotor blade design optimization ACSR composite rotor blades and smart rotor development Furthermore rotorcraft modeling and analysis aspects are highly developed with considerable manpower available and being generated in these areas Practical implications - Two helicopter projects leading to the advanced light helicopter and light combat helicopter have been completed by Hindustan Aeronautics Ltd These helicopter programs have benefited from the basic research and also provide platforms for further basic research and deeper industry academic collaborations The development of well trained helicopter engineers is also attractive for international helicopter design and manufacturing companies The basic research done needs to be further developed for practical and commercial applications Originality/value - This is the first comprehensive research on rotorcraft research in India an important emerging market manufacturing and sourcing destination for the industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal and molecular structure of sodium deoxyinosine monophosphate (5'-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Aring, b = 9.206(3) Aring and c = 12.770(6) Aring. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2' endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3' atom, a feature observed in many crystal structures of sodium salts of nucleotides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The present study is to evaluate the antiulcer effect of hydroalcoholic (70%) extract of Terminalia chebula fruit. Materials and methods: Aspirin, ethanol and cold restraint stress-induced ulcer methods in rats were used for the study. The effects of the extract on gastric secretions, pH, total and free acidity using pylorus ligated methods were also evaluated. Results: Animals pretreated with doses of 200 and 500 mg/kg hydroalcoholic extract showed significant reduction in lesion index, total affected area and percentage of lesion in comparison with control group (P < 0.05 and P < 0.01) in the aspirin, ethanol and cold restraint stress-induced ulcer models. Similarly extracts increased mucus production in aspirin and ethanol-induced ulcer models. At doses of 200 and 500 mg/kg of T. chebula extract showed antisecretory activity in pylorus ligated model, which lead to a reduction in the gastric juice volume, free acidity, total acidity, and significantly increased gastric pH. Discussion and conclusion: These findings indicate that hydroalcoholic extract of the fruit T. chebula displays potential antiulcerogenic activity. This activity thus lends pharmacological credence to the suggested use of the plant as a natural remedy in the treatment or management of ulcer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absorption spectrum in the visible range and the, ESR spectrum of vanadyl sulfate were lost on addition of diperoxovanadate. The V-51-NMR spectra revealed that diperoxovanadate was reduced to vanadate and its oligomers. With excess vanadyl, tetrameric vanadate was found to be the major product, During this reaction oxygen was released into the medium. The oxygen-release reaction was inhibited by a variety of organic ligands-imidazole, benzoate, formate, mannitol, ethanol, Tris, DMPO, malate, and asparagine. An oxygen-consuming reaction emerged at high concentrations of some of these compounds, e.g. benzoate and ethanol. Using DMPO as the spin-trap, an oxygen-radical species with a 1:2:2:1 type of ESR spectrum was detected in the reaction mixtures resulting from vanadyl oxidation by diperoxovanadate which was unaffected by addition of catalase or ethanol. The results showed that secondary oxygen-exchange reactions occur which depend on and utilize the intermediates in the primary reaction during diperoxovanadate-dependent oxidation of vanadyl sulfate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy has been used to investigate the photochemistry of ubiquinone in cyclohexane, water and ethanol. In water the absorption of a single 248 nm photon produces triplet ubiquinone which then oxidises water, via electron transfer, to form the ubiquinone radical anion. In ethanol, however, the triplet state reacts with the solvent via both electron and hydrogen-atom transfer, the latter process forming the semihydroquinone. Only in the less reactive solvent, cyclohexane, is triplet quinone observed. The Raman bands observed for each of the species are assigned on the basis of similarities of their spectra to other quinones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduction of carbon emissions is of paramount importance in the context of global warming and climate change. Countries and global companies are now engaged in understanding systematic ways of solving carbon economics problems, aimed ultimately at achieving well defined emission targets. This paper proposes mechanism design as an approach to solving carbon economics problems. The paper first introduces carbon economics issues in the world today and next focuses on carbon economics problems facing global industries. The paper identifies four problems faced by global industries: carbon credit allocation (CCA), carbon credit buying (CCB), carbon credit selling (CCS), and carbon credit exchange (CCE). It is argued that these problems are best addressed as mechanism design problems. The discipline of mechanism design is founded on game theory and is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision, when the actual preferences are not known publicly. The paper provides an overview of mechanism design and presents the challenges involved in designing mechanisms with desirable properties. To illustrate the application of mechanism design in carbon economics,the paper describes in detail one specific problem, the carbon credit allocation problem.