120 resultados para stabi-lity of flows
Resumo:
The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.
Resumo:
In der vorliegenden Arbeit wird die Methode der parametrischen Differentiation angewendet, um ein System nichtlinearer Gleichungen zu lösen, das zwei- und dreidimensionale freie, konvektive Grenzschichströmungen bzw. eine zweidimensionale magnetohydrodynamische Grenzschichtströmung beherrscht. Der Hauptvorteil dieser Methode besteht darin, daß die nichlinearen Gleichungen auf lineare reduziert werden und die Nichtlinearität auf ein System von Gleichungen erster Ordnung beschränkt wird, das, verglichen mit den ursprünglichen Nichtlinearen Gleichungen, viel leichter gelöst werden kann. Ein anderer Vorzug der Methode ist, daß sie es ermöglicht, die Lösung von einer bekannten, zu einem bestimmten Parameterwert gehörigen Lösung aus durch schrittweises Vorgehen die Lösung für den gesamten Parameterbereich zu erhalten. Die mit dieser Methode gewonnenen Ergebnisse stimmen gut mit den entsprechenden, mit anderen numerischen Verfahren erzielten überein.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.
Resumo:
The equation of motion for a toroidal flux ring in a stellar convective envelope is derived, and the equilibrium of such a ring is considered. Necessary conditions for the stability of toroidal flux rings are derived, and results of stability calculations for a particular model of the meridional flow are presented. The motions of the flux rings when the rings are far from their equilibrium position or when equilibrium does not exist are considered. The results confirm the linear stability analysis, and show that in the absence of stable equilibrium, the rings move toward the solar surface along a trajectory which is parallel to the rotation axis. It is expected that viscosity will tend to reduce the rotational velocity difference between the flux ring and its surroundings, thus reducing the Coriolis force and altering the equilibrium. The storage time of toroidal flux rings is estimated, and some implications for the sun are discussed.
Resumo:
Rapid granular flows are defined as flows in which the time scales for the particle interactions are small compared to the inverse of the strain rate, so that the particle interactions can be treated as instantaneous collisions. We first show, using Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.6 are rapid granular flows. Since collisions are instantaneous, a kinetic theory approach for the constitutive relations is most appropriate, and we present kinetic theory results for different microscopic models for particle interaction. The significant difference between granular flows and normal fluids is that energy is not conserved in a granular flow. The differences in the hydrodynamic modes caused by the non-conserved nature of energy are discussed. Going beyond the Boltzmann equation, the effect of correlations is studied using the ring kinetic approximation, and it is shown that the divergences in the viscometric coefficients, which are present for elastic fluids, are not present for granular flows because energy is not conserved. The hydrodynamic model is applied to the flow down an inclined plane. Since energy is not a conserved variable, the hydrodynamic fields in the bulk of a granular flow are obtained from the mass and momentum conservation equations alone. Energy becomes a relevant variable only in thin 'boundary layers' at the boundaries of the flow where there is a balance between the rates of conduction and dissipation. We show that such a hydrodynamic model can predict the salient features of a chute flow, including the flow initiation when the angle of inclination is increased above the 'friction angle', the striking lack of observable variation of the volume fraction with height, the observation of a steady flow only for certain restitution coefficients, and the density variations in the boundary layers.
Resumo:
The micropolar fluids like Newtonian and Non-Newtonian fluids cannot sustain a simple shearing motion, wherein only one component of velocity is present. They exhibit both primary and secondary motions when the boundaries are subject to slow rotations. The primary motion, as in Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., resembles that of Newtonian fluid for slow steady rotation. We further notice that the micro-rotation becomes identically equal to the vorticity present in the fluid and the condition b) of "Wall vorticity" can alone be satisfied at the boundaries. As regards, the secondary motion, we notice that it can be determined by the above procedure for a special class of fluids, namely that for which j0(n2-n3)=4 n3/l2. Moreover for this class of fluids, the micro-rotation is identical with the vorticity of the fluid everywhere. Also the stream function for the secondary flow is identical with that for the Newtonian fluid with a suitable definition of the Reynolds number. In contrast with the Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., this class of micropolar fluids does not show separation. This is in conformity with the statement of Condiff and Dahler (3) that in any steady flow, internal spin matches the vorticity everywhere provided that (i) spin boundary conditions are satisfied, (ii) body torques and non-conservative body forces are absent, and (iii) inertial and spin-inertial terms are either negligible or vanish identically.
Resumo:
In this paper we have studied the flow of a micropolar fluid, whose constitutive equations were given by Eringen, in two dimensional plane flow. In two notes, we have discussed the validity of the boundary condition v=a ω and its effect on the entire flow field. We have restricted our study to the case when Stokes' approximation is valid, i. e. slow motion for it is difficult to uncouple the equations in the most general case.
Resumo:
The study of steady-state flows in radiation-gas-dynamics, when radiation pressure is negligible in comparison with gas pressure, can be reduced to the study of a single first-order ordinary differential equation in particle velocity and radiation pressure. The class of steady flows, determined by the fact that the velocities in two uniform states are real, i.e. the Rankine-Hugoniot points are real, has been discussed in detail in a previous paper by one of us, when the Mach number M of the flow in one of the uniform states (at x=+∞) is greater than one and the flow direction is in the negative direction of the x-axis. In this paper we have discussed the case when M is less than or equal to one and the flow direction is still in the negative direction of the x-axis. We have drawn the various phase planes and the integral curves in each phase plane give various steady flows. We have also discussed the appearance of discontinuities in these flows.
Resumo:
We describe here a novel method of generating large volumetric heating in a liquid. The method uses the principle of ohmic heating of the liquid, rendered electrically conducting by suitable additives if necessary. Electrolysis is prevented by the use of high frequency alternating voltage and chemically treated electrodes. The technique is demonstrated by producing substantial heating in an initially neutral jet of water. Simple flow visualisation studies, made by adding dye to the jet, show marked changes in the growth and development of the jet with heat addition.