18 resultados para spinels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

he thermodynamic properties of the spinel Mg2SnO4 have been determined by emf measurements on the solid oxide galvanic cell,View the MathML source in the temperature range 600 to 1000°C. The Gibbs' free energy of formation of Mg2SnO4 from the component oxides can be expressed as View the MathML source,View the MathML source These values are in good agreement with the information obtained by Jackson et al. [Earth Planet. Sci. Lett.24, 203 (1974)] on the high pressure decomposition of magnesium stannate into component oxides at different temperatures. The thermodynamic data suggest that the spinel phase is entropy stabilized, and would be unstable below 207 (±25)°C at atmospheric pressure. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that the stannates of nickel and copper(II) are unstable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen content of liquid Ni-Mn alloy equilibrated with spinel solid solution, (Ni,Mn)O. (1 +x)A12O3, and α-Al2O3 has been measured by suction sampling and inert gas fusion analysis. The corresponding oxygen potential of the three-phase system has been determined with a solid state cell incorporating (Y2O3)ThO2 as the solid electrolyte and Cr + Cr2O3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface of the alloy and alumina crucible was obtained using EPMA. The experimental data are compared with a thermodynamic model based on the free energies of formation of end-member spinels, free energy of solution of oxygen in liquid nickel, interaction parameters, and the activities in liquid Ni-Mn alloy and spinel solid solution. Mixing properties of the spinel solid solution are derived from a cation distribution model. The computational results agree with the experimental data on oxygen concentration, potential, and composition of the spinel phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neoarchean layered anorthositic complex at Sittampundi in southern India is known for its chromitite layers that are mostly associated with anorthosite (An(90-100)). The chromitites contain FeAl-rich chromites concentrated in layers between amphibole-rich layers with a dominant mineralogy of amphibole-spinel-plagiocase+/-sapphirine. The chromite-rich layers contain only amphibole and plagioclase. Mineral compositions illustrated by X-ray composition maps and profiles show subtle chemical differences. The chrome spinels are of refractory grade with Cr2O3 and Al2O3 contents varying between 34-40 wt.% and 23-28 wt.%. The chromite compositions are noticeably different from those in layered igneous intrusions of the Bushveld-Stillwater type. The existence of original highly calcic plagioclase, FeAl-rich chromite, and magmatic amphibole is consistent with derivation from a parental magma of hydrous tholeiitic composition that was most likely generated in a supra-subduction zone arc setting. In terms of mineralogy and field relations, the Sittampundi chromitites are remarkably similar to anorthosite-hosted chromitites in the Neoarchean Fiskensset anorthositic complex, Greenland. We propose that the Sittampundi chromitites formed by partial melting of unusually aluminous harzburgite in a hydrated mantle wedge above a subduction zone. This melting process produced hydrous, aluminous basalt, which fractionated at depth to give rise to a variety of high-alumina basalt compositions from which the anorthositic complex with its cumulate chromite-rich and amphibole-rich layers formed within the magma chamber of a supra-subduction zone arc. (C) 2011 Elsevier B.V. All rights reserved.