42 resultados para spatial resolution
Resumo:
Land cover (LC) refers to what is actually present on the ground and provide insights into the underlying solution for improving the conditions of many issues, from water pollution to sustainable economic development. One of the greatest challenges of modeling LC changes using remotely sensed (RS) data is of scale-resolution mismatch: that the spatial resolution of detail is less than what is required, and that this sub-pixel level heterogeneity is important but not readily knowable. However, many pixels consist of a mixture of multiple classes. The solution to mixed pixel problem typically centers on soft classification techniques that are used to estimate the proportion of a certain class within each pixel. However, the spatial distribution of these class components within the pixel remains unknown. This study investigates Orthogonal Subspace Projection - an unmixing technique and uses pixel-swapping algorithm for predicting the spatial distribution of LC at sub-pixel resolution. Both the algorithms are applied on many simulated and actual satellite images for validation. The accuracy on the simulated images is ~100%, while IRS LISS-III and MODIS data show accuracy of 76.6% and 73.02% respectively. This demonstrates the relevance of these techniques for applications such as urban-nonurban, forest-nonforest classification studies etc.
Resumo:
Image fusion techniques are useful to integrate the geometric detail of a high-resolution panchromatic (PAN) image and the spectral information of a low-resolution multispectral (MSS) image, particularly important for understanding land use dynamics at larger scale (1:25000 or lower), which is required by the decision makers to adopt holistic approaches for regional planning. Fused images can extract features from source images and provide more information than one scene of MSS image. High spectral resolution aids in identification of objects more distinctly while high spatial resolution allows locating the objects more clearly. The geoinformatics technologies with an ability to provide high-spatial-spectral-resolution data helps in inventorying, mapping, monitoring and sustainable management of natural resources. Fusion module in GRDSS, taking into consideration the limitations in spatial resolution of MSS data and spectral resolution of PAN data, provide high-spatial-spectral-resolution remote sensing images required for land use mapping on regional scale. GRDSS is a freeware GIS Graphic User Interface (GUI) developed in Tcl/Tk is based on command line arguments of GRASS (Geographic Resources Analysis Support System) with the functionalities for raster analysis, vector analysis, site analysis, image processing, modeling and graphics visualization. It has the capabilities to capture, store, process, analyse, prioritize and display spatial and temporal data.
Resumo:
Wetlands are the most productive and biologically diverse but very fragile ecosystems. They are vulnerable to even small changes in their biotic and abiotic factors. In recent years, there has been concern over the continuous degradation of wetlands due to unplanned developmental activities. This necessitates inventorying, mapping, and monitoring of wetlands to implement sustainable management approaches. The principal objective of this work is to evolve a strategy to identify and monitor wetlands using temporal remote sensing (RS) data. Pattern classifiers were used to extract wetlands automatically from NIR bands of MODIS, Landsat MSS and Landsat TM remote sensing data. MODIS provided data for 2002 to 2007, while for 1973 and 1992 IR Bands of Landsat MSS and TM (79m and 30m spatial resolution) data were used. Principal components of IR bands of MODIS (250 m) were fused with IRS LISS-3 NIR (23.5 m). To extract wetlands, statistical unsupervised learning of IR bands for the respective temporal data was performed using Bayesian approach based on prior probability, mean and covariance. Temporal analysis of wetlands indicates a sharp decline of 58% in Greater Bangalore attributing to intense urbanization processes, evident from a 466% increase in built-up area from 1973 to 2007.
Resumo:
Sub-pixel classification is essential for the successful description of many land cover (LC) features with spatial resolution less than the size of the image pixels. A commonly used approach for sub-pixel classification is linear mixture models (LMM). Even though, LMM have shown acceptable results, pragmatically, linear mixtures do not exist. A non-linear mixture model, therefore, may better describe the resultant mixture spectra for endmember (pure pixel) distribution. In this paper, we propose a new methodology for inferring LC fractions by a process called automatic linear-nonlinear mixture model (AL-NLMM). AL-NLMM is a three step process where the endmembers are first derived from an automated algorithm. These endmembers are used by the LMM in the second step that provides abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual proportions are fed to multi-layer perceptron (MLP) architecture as input to train the neurons which further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. AL-NLMM is validated on computer simulated hyperspectral data of 200 bands. Validation of the output showed overall RMSE of 0.0089±0.0022 with LMM and 0.0030±0.0001 with the MLP based AL-NLMM, when compared to actual class proportions indicating that individual class abundances obtained from AL-NLMM are very close to the real observations.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America
Resumo:
Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.
Resumo:
More than 70 molecules of varied nature have been identified in the envelopes of carbon-rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutralneutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high-enthalpy source with a flow tube and a pulsed laser photolysislaser-induced fluorescence system to probe the undergoing chemical reactions. The high-enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3-butadiene (1,3-C4H6), and 1-butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10-10 cm3 center dot molecule-1 center dot s-1 and exhibit slight negative temperature dependence above room temperature. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753766, 2012
Resumo:
We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (approximate to 250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769058]
Resumo:
The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo.
Resumo:
We theoretically propose and computationally demonstrate the generation of extended light-sheet for fluorescence microscopy. This is made possible by the introduction of a specially designed double-window spatial filter that allows the light to pass through the periphery and center of a cylindrical lens. When illuminated with a plane wave, the proposed filter results in an extended depth-of-focus along with side-lobes which are due to other interferences in the transverse focal plane. Computational studies show a maximum extension of light-sheet by 3.38 times for single photon excitation and 3.68 times for multiphoton excitation as compared to state-of-art single plane illumination microscopy system. This technique may facilitate the study of large biological specimens (such as Zebrafish embryo and tissue) with high spatial resolution and reduced photobleaching. (C) 2013 AIP Publishing LLC.
Resumo:
The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space-time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space-time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space-time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.