77 resultados para sonnolenza, addormentamento, classificatore, SVM, SEM, EEG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data in classification. In this work, we present a semi-supervised support vector classifier that is designed using quasi-Newton method for nonsmooth convex functions. The proposed algorithm is suitable in dealing with very large number of examples and features. Numerical experiments on various benchmark datasets showed that the proposed algorithm is fast and gives improved generalization performance over the existing methods. Further, a non-linear semi-supervised SVM has been proposed based on a multiple label switching scheme. This non-linear semi-supervised SVM is found to converge faster and it is found to improve generalization performance on several benchmark datasets. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following topics were dealt with: document analysis and recognition; multimedia document processing; character recognition; document image processing; cheque processing; form processing; music processing; document segmentation; electronic documents; character classification; handwritten character recognition; information retrieval; postal automation; font recognition; Indian language OCR; handwriting recognition; performance evaluation; graphics recognition; oriental character recognition; and word recognition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalization performance of the SVM classifier depends mainly on the VC dimension and the dimensionality of the data. By reducing the VC dimension of the SVM classifier, its generalization performance is expected to increase. In the present paper, we argue that the VC dimension of SVM classifier can be reduced by applying bootstrapping and dimensionality reduction techniques. Experimental results showed that bootstrapping the original data and bootstrapping the projected (dimensionally reduced) data improved the performance of the SVM classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study connectivity in the brain has been proposed. Being non-parametric, this method makes very few assumptions, making it suitable for investigating brain function in a data-driven way. CPR's utility with application to multichannel electroencephalographic (EEG) signals has been demonstrated. Brain connectivity obtained using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity between (a) epileptic seizure and pre-seizure and (b) eyes open and eyes closed states. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the superior ability of CPR for discriminating seizure from pre-seizure. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex biological systems such as the human brain can be expected to be inherently nonlinear and hence difficult to model. Most of the previous studies on investigations of brain function have either used linear models or parametric nonlinear models. In this paper, we propose a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study seizures in the brain. The advantage of this nonparametric method is that it makes very few assumptions thus making it possible to investigate brain functioning in a data-driven way. We have demonstrated the utility of CPR measure for the study of phase synchronization in multichannel seizure EEG recorded from patients with global as well as focal epilepsy. For the case of global epilepsy, brain synchronization using thresholded CPR matrix of multichannel EEG signals showed clear differences in results obtained for epileptic seizure and pre-seizure. Brain headmaps obtained for seizure and preseizure cases provide meaningful insights about synchronization in the brain in those states. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. Comparative studies with linear correlation have shown that the nonlinear measure CPR outperforms the linear correlation measure. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with processing the EEG signals obtained from 16 spatially arranged electrodes to measure coupling or synchrony between the frontal, parietal, occipital and temporal lobes of the cerebrum under the eyes open and eyes closed conditions. This synchrony was measured using magnitude squared coherence, Short Time Fourier Transform and wavelet based coherences. We found a pattern in the time-frequency coherence as we moved from the nasion to the inion of the subject's head. The coherence pattern obtained from the wavelet approach was found to be far more capable of picking up peaks in coherence with respect to frequency when compared to the regular Fourier based coherence. We detected high synchrony between frontal polar electrodes that is missing in coherence plots between other electrode pairs. The study has potential applications in healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T-max and T-min) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables Such as air temperature, zonal and meridional wind velocities at 925 nib which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to Study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T-max and T-min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractal Dimensions (FD) are popular metrics for characterizing signals. They are used as complexity measuresin signal analysis applications in various fields. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency,number of harmonics, noise power and signal bandwidth. We have used Higuchi’s method for estimating FDs. This study helps in gaining a better understanding of the FD complexity measure for various signal parameters. Our results indicate that FD is a useful metric in estimating various signal properties. As an application of the FD measure in real world scenario, the FD is used as a feature in discriminating seizures from seizure free intervals in intracranial EEG data recordings and the FD feature has given good discrimination performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the overconsolidation ratio (OCR) of clay deposits is an important task in geotechnical engineering practice. This paper examines the potential of a support vector machine (SVM) for predicting the OCR of clays from piezocone penetration test data. SVM is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. The five input variables used for the SVM model for prediction of OCR are the corrected cone resistance (qt), vertical total stress (sigmav), hydrostatic pore pressure (u0), pore pressure at the cone tip (u1), and the pore pressure just above the cone base (u2). Sensitivity analysis has been performed to investigate the relative importance of each of the input parameters. From the sensitivity analysis, it is clear that qt=primary in situ data influenced by OCR followed by sigmav, u0, u2, and u1. Comparison between SVM and some of the traditional interpretation methods is also presented. The results of this study have shown that the SVM approach has the potential to be a practical tool for determination of OCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of settlement of shallow foundations on cohesionless soil is an important task in geotechnical engineering. Available methods for the determination of settlement are not reliable. In this study, the support vector machine (SVM), a novel type of learning algorithm based on statistical theory, has been used to predict the settlement of shallow foundations on cohesionless soil. SVM uses a regression technique by introducing an ε – insensitive loss function. A thorough sensitive analysis has been made to ascertain which parameters are having maximum influence on settlement. The study shows that SVM has the potential to be a useful and practical tool for prediction of settlement of shallow foundation on cohesionless soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.