102 resultados para signal detection theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rapid data acquisition, natural fluorescence rejection and experimental ease are the advantages of the ultra-fast Raman loss scattering (URLS) which makes it a unique and valuable molecular structure-determining technique. URLS is an analogue of stimulated Raman scattering (SRS) but far more sensitive than SRS. It involves the interaction of two laser sources, viz. a picosecond (ps) pulse and white light, with the sample leading to the generation of loss signal on the higher energy (blue) side with respect to the wavelength of the ps pulse, unlike the gain signal observed on the red side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. Also, the very prerequisite of the experimental protocol for signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which always appears on the red side. Unlike coherent anti-Stokes Raman scattering, URLS signals are not precluded by non-resonant background under resonance condition and also being a self-phase matched process, it is experimentally easier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report on the concept and the design principle of ultrafast Raman loss spectroscopy (URLS) as a structure-elucidating tool. URLS is an analogue of stimulated Raman scattering (SRS) but more sensitive than SRS with better signal-to-noise ratio. It involves the interaction of two laser sources, namely, a picosecond (ps) Raman pump pulse and a white-light (WL) continuum, with a sample, leading to the generation of loss signals on the higher energy (blue) side with respect to the wavelength of the Raman pump unlike the gain signal observed on the lower energy (red) side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. An experimental study providing an insight into the origin of this extra intensity in URLS as compared to SRS is reported. Furthermore, the very requirement of the experimental protocol for the signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which appears on the red side. Unlike CARS, URLS signals are not precluded by the non-resonant background and, being a self-phase-matched process, URLS is experimentally easier. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-frequency sounds are advantageous for long-range acoustic signal transmission, but for small animals they constitute a challenge for signal detection and localization. The efficient detection of sound in insects is enhanced by mechanical resonance either in the tracheal or tympanal system before subsequent neuronal amplification. Making small structures resonant at low sound frequencies poses challenges for insects and has not been adequately studied. Similarly, detecting the direction of long-wavelength sound using interaural signal amplitude and/or phase differences is difficult for small animals. Pseudophylline bushcrickets predominantly call at high, often ultrasonic frequencies, but a few paleotropical species use lower frequencies. We investigated the mechanical frequency tuning of the tympana of one such species, Onomarchus uninotatus, a large bushcricket that produces a narrow bandwidth call at an unusually low carrier frequency of 3.2. kHz. Onomarchus uninotatus, like most bushcrickets, has two large tympanal membranes on each fore-tibia. We found that both these membranes vibrate like hinged flaps anchored at the dorsal wall and do not show higher modes of vibration in the frequency range investigated (1.5-20. kHz). The anterior tympanal membrane acts as a low-pass filter, attenuating sounds at frequencies above 3.5. kHz, in contrast to the high-pass filter characteristic of other bushcricket tympana. Responses to higher frequencies are partitioned to the posterior tympanal membrane, which shows maximal sensitivity at several broad frequency ranges, peaking at 3.1, 7.4 and 14.4. kHz. This partitioning between the two tympanal membranes constitutes an unusual feature of peripheral auditory processing in insects. The complex tracheal shape of O. uninotatus also deviates from the known tube or horn shapes associated with simple band-pass or high-pass amplification of tracheal input to the tympana. Interestingly, while the anterior tympanal membrane shows directional sensitivity at conspecific call frequencies, the posterior tympanal membrane is not directional at conspecific frequencies and instead shows directionality at higher frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose low-complexity algorithms based on Monte Carlo sampling for signal detection and channel estimation on the uplink in large-scale multiuser multiple-input-multiple-output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and a similar number of uplink users. A BS receiver that employs a novel mixed sampling technique (which makes a probabilistic choice between Gibbs sampling and random uniform sampling in each coordinate update) for detection and a Gibbs-sampling-based method for channel estimation is proposed. The algorithm proposed for detection alleviates the stalling problem encountered at high signal-to-noise ratios (SNRs) in conventional Gibbs-sampling-based detection and achieves near-optimal performance in large systems with M-ary quadrature amplitude modulation (M-QAM). A novel ingredient in the detection algorithm that is responsible for achieving near-optimal performance at low complexity is the joint use of a mixed Gibbs sampling (MGS) strategy coupled with a multiple restart (MR) strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for a large number of BS antennas and users (e. g., 64 and 128 BS antennas and users). The proposed Gibbs-sampling-based channel estimation algorithm refines an initial estimate of the channel obtained during the pilot phase through iterations with the proposed MGS-based detection during the data phase. In time-division duplex systems where channel reciprocity holds, these channel estimates can be used for multiuser MIMO precoding on the downlink. The proposed receiver is shown to achieve good performance and scale well for large dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance studied, when transmitting binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals. It is demonstrated that the MBER based CF aided scheme is capable of outperforming existing MMSE, least square-based solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural multispecies acoustic choruses such as the dusk chorus of a tropical rain forest consist of simultaneously signalling individuals of different species whose calls travel through a common shared medium before reaching their `intended' receivers. This causes masking interference between signals and impedes signal detection, recognition and localization. The levels of acoustic overlap depend on a number of factors, including call structure, intensity, habitat-dependent signal attenuation and receiver tuning. In addition, acoustic overlaps should also depend on caller density and the species composition of choruses, including relative and absolute abundance of the different calling species. In this study, we used simulations to examine the effects of chorus species relative abundance and caller density on the levels of effective heterospecific acoustic overlap in multispecies choruses composed of the calls of five species of crickets and katydids that share the understorey of a rain forest in southern India. We found that on average species-even choruses resulted in higher levels of effective heterospecific acoustic overlap than choruses with strong dominance structures. This effect was found consistently across dominance levels ranging from 0.4 to 0.8 for larger choruses of forty individuals. For smaller choruses of twenty individuals, the effect was seen consistently for dominance levels of 0.6 and 0.8 but not 0.4. Effective acoustic overlap (EAO) increased with caller density but the manner and extent of increase depended both on the species' call structure and the acoustic context provided by the composition scenario. The Phaloria sp. experienced very low levels of EAO and was highly buffered to changes in acoustic context whereas other species experienced high FAO across contexts or were poorly buffered. These differences were not simply predictable from call structures. These simulation-based findings may have important implications for acoustic biodiversity monitoring and for the study of acoustic masking interference in natural environments. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generalized spatial modulation (GSM) uses n(t) transmit antenna elements but fewer transmit radio frequency (RF) chains, n(rf). Spatial modulation (SM) and spatial multiplexing are special cases of GSM with n(rf) = 1 and n(rf) = n(t), respectively. In GSM, in addition to conveying information bits through n(rf) conventional modulation symbols (for example, QAM), the indices of the n(rf) active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10(-3). Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space viewpoint is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces $\mathcal{S_I}$ and $\mathcal{S_C}$ and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating $\mathcal{S_I}$ and $\mathcal{S_C}$ is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. The average case CC of the relevant greater-than (GT) function is characterized within two bits. In the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The matched filter method for detecting a periodic structure on a surface hidden behind randomness is known to detect up to (r(0)/Lambda) gt;= 0.11, where r(0) is the coherence length of light on scattering from the rough part and 3 is the wavelength of the periodic part of the surface-the above limit being much lower than what is allowed by conventional detection methods. The primary goal of this technique is the detection and characterization of the periodic structure hidden behind randomness without the use of any complicated experimental or computational procedures. This paper examines this detection procedure for various values of the amplitude a of the periodic part beginning from a = 0 to small finite values of a. We thus address the importance of the following quantities: `(a)lambda) `, which scales the amplitude of the periodic part with the wavelength of light, and (r(0))Lambda),in determining the detectability of the intensity peaks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal in the whisper activity detection (WAD) is to find the whispered speech segments in a given noisy recording of whispered speech. Since whispering lacks the periodic glottal excitation, it resembles an unvoiced speech. This noise-like nature of the whispered speech makes WAD a more challenging task compared to a typical voice activity detection (VAD) problem. In this paper, we propose a feature based on the long term variation of the logarithm of the short-time sub-band signal energy for WAD. We also propose an automatic sub-band selection algorithm to maximally discriminate noisy whisper from noise. Experiments with eight noise types in four different signal-to-noise ratio (SNR) conditions show that, for most of the noises, the performance of the proposed WAD scheme is significantly better than that of the existing VAD schemes and whisper detection schemes when used for WAD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.