62 resultados para sensory drive
Resumo:
In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 space-vector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
A bi-level voltage drive circuit for step motors that can provide the required high starting torque is described. In this circuit, microprocessor 8085 and parallel port interface 8255 are used for generating the code sequence. The inverter buffer 74LS06 provides enough drive to a darlington pair transistor. The comparator LM339 is used to compare the required voltage for step motor with the set value. This circuit can be effectively used for step motors having maximum rated current of less than 15 A with proper heat sink.
Resumo:
This paper proposes a sensorless vector control scheme for general-purpose induction motor drives using the current error space phasor-based hysteresis controller. In this paper, a new technique for sensorless operation is developed to estimate rotor voltage and hence rotor flux position using the stator current error during zero-voltage space vectors. It gives a comparable performance with the vector control drive using sensors especially at a very low speed of operation (less than 1 Hz). Since no voltage sensing is made, the dead-time effect and loss of accuracy in voltage sensing at low speed are avoided here, with the inherent advantages of the current error space phasor-based hysteresis controller. However, appropriate device on-state drops are compensated to achieve a steady-state operation up to less than 1 Hz. Moreover, using a parabolic boundary for current error, the switching frequency of the inverter can be maintained constant for the entire operating speed range. Simple sigma L-s estimation is proposed, and the parameter sensitivity of the control scheme to changes in stator resistance, R-s is also investigated in this paper. Extensive experimental results are shown at speeds less than 1 Hz to verify the proposed concept. The same control scheme is further extended from less than 1 Hz to rated 50 Hz six-step operation of the inverter. Here, the magnetic saturation is ignored in the control scheme.
Resumo:
This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.
Resumo:
A new configuration is proposed for high-power induction motor drives. The induction machine is provided with two three-phase stator windings with their axes in line. One winding is designed for higher voltage and is meant to handle the main (active) power. The second winding is designed for lower voltage and is meant to carry the excitation (reactive) power. The excitation winding is powered by an insulated-gate-bipolar-transistor-based voltage source inverter with an output filter. The power winding is fed by a load-commutated current source inverter. The commutation of thyristors in the load-commutated inverter (LCI) is achieved by injecting the required leading reactive power from the excitation inverter. The MMF harmonics due to the LCI current are also cancelled out by injecting a suitable compensating component from the excitation inverter, so that the electromagnetic torque of the machine is smooth. Results from a prototype drive are presented to demonstrate the concept.
Resumo:
A multilevel inverter topology for seven-level space vector generation is proposed in this paper. In this topology, the seven-level structure is realized using two conventional two-level inverters and six capacitor-fed H-bridge cells. It needs only two isolated dc-voltage sources of voltage rating V(dc)/2 where V(dc) is the dc voltage magnitude required by the conventional neutral point clamped (NPC) seven-level topology. The proposed topology is capable of maintaining the H-bridge capacitor voltages at the required level of V(dc)/6 under all operating conditions, covering the entire linear modulation and overmodulation regions, by making use of the switching state redundancies. In the event of any switch failure in H-bridges, this inverter can operate in three-level mode, a feature that enhances the reliability of the drive system. The two-level inverters, which operate at a higher voltage level of V(dc)/2, switch less compared to the H-bridges, which operate at a lower voltage level of V(dc)/6, resulting in switching loss reduction. The experimental verification of the proposed topology is carried out for the entire modulation range, under steady state as well as transient conditions.
Resumo:
Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control, using only inverter switching state redundancies. The proposed power circuit gives a simple power bus structure.
Resumo:
Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.
Resumo:
This paper presents the topology selection, design steps, simulation studies, design verification, system fabrication and performance evaluation on an induction motor based dynamometer system. The control algorithm used the application is well known field oriented control or vector control. Position sensorless scheme is adopted to eliminate the encoder requirement. The dynamometer is rated for 3.7kW. It can be used to determine the speed–torque characteristics of any rotating system. The rotating system is to be coupled with the vector controlled drive and the required torque command is given from the latter. The experimental verification is carried out for an open loop v/f drive as a test rotating system and important test results are presented.
Resumo:
This paper proposes a new hybrid nine-level inverter topology for IM drive. The nine-level structure is realized by using two three-phase two-level inverters fed by isolated DC voltage sources and six H-bridges fed by capacitors. The number of switches required in this topology is only 36 where as the conventional nine-level topologies require 48 switches. The voltages across the capacitors, feeding the H-bridges that operate at asymmetric voltages, are effectively balanced by making use of the switching state redundancies. In this topology, the requirement of DC link voltage is only half of the maximum magnitude of the voltage space vector. As the two-level inverters are powered by isolated voltage sources, the circulation of triplen harmonic current in the motor winding is prevented. The proposed drive system is capable of functioning in three-level mode in case of any switch failure in H-bridges. The performance of the proposed topology in the entire modulation range is verified by simulation study and experiment.
A Novel VSI- and CSI-Fed Active-Reactive Induction Motor Drive with Sinusoidal Voltages and Currents
Resumo:
Till date load-commutated inverter (LCI)-fed synchronous motor drive configuration is popular in high power applications (>10 MW). The leading power factor operation of synchronous motor by excitation control offers this simple and rugged drive structure. On the contrary, LCI-fed induction motor drive is absent as it always draws lagging power factor current. Therefore, complicated commutation circuit is required to switch off thyristors for a current source inverter (CSI)-driven induction motor. It poses the major hindrance to scale up the power rating of CSI-fed induction motor drive. Anew power topology for LCI-fed induction motor drive for medium-voltage drive application is proposed. A new induction machine (active-reactive induction machine) with two sets of three-phase winding is introduced as a drive motor. The proposed power configuration ensures sinusoidal voltage and current at the motor terminals. The total drive power is shared among a thyristor-based LCI, an insulated gate bipolar transistor (IGBT)-based two-level voltage source inverter (VSI), and a three-level VSI. The benefits of SCRs and IGBTs are explored in the proposed drive. Experimental results from a prototype drive verify the basic concepts of the drive.
Resumo:
Intra-aortic balloon pumping is a counter pulsation technique for temporary circulatory assistance in cardiogenic shock and other low cardiac output conditions. Conventional systems use a balloon at the end of a catheter driven by a solenoid valve, controlled by patient's ECG or ventricular pressure signal. This results in time delay introducted by solenoid spool inertia, gas inertia, and hysteresis effects of the solenoid. Fluidics, because of their non-moving part operation and high switching speeds, minimizes the inertial effects while contributing high reliability. This communication describes a fluidic system developed for driving the balloon accepting electric control signals.
Resumo:
This paper describes the method of field orientation of the stator current vector with respect to the stator, mutual, and rotor flux vectors, for the control of an induction motor fed from a current source inverter (CSI). A control scheme using this principle is described for orienting the stator current with respect to the rotor flux, as this gives natural decoupling between the current coordinates. A dedicated micro-computer system developed for implementing this scheme has been described. The experimental results are also presented.
Resumo:
A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.