245 resultados para rotational oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the occurrence of nonclassical rotational inertia (NCRI) arising from superfluidity along grain boundaries in a two-dimensionalbosonic system. We make use of a standard mapping between the zero-temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines in which the microcrystals are separated by liquidlike grain-boundary regions which widen as the vortex system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system (equivalently, superfluid regions in the bosonic system) form a connected, system-spanning structure with one or more closed loops. The implications of these results for experimentally observed supersolid phenomena are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the crystal structure of the antimalarial drug amodiaquine, the bonds linking the quinoline and the phenyl groups show partial double-bond character. The partial double-bond character of the two exocyclic bonds, together with stereochemical constraints, reduce flexibility of the two ring systems of the molecule. The dihedral angle between the two ring planes is lowest compared to those in the antileukaemic drug amsacrine and its derivatives. CPK-modelling studies suggest the way amodiaquine can bind to DNA. Stacking interaction between the quinoline and phenyl groups of independent molecules and the hydrogen-bond network stabilize the crystal structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three-dimensional with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three-dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the translational and rotational motion in dense molecular liquids, detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out for three different values of the aspect ratio kappa. For ellipsoids with an aspect ratio equal to 2, the product of the translational diffusion coefficient (D-T) and the average orientational correlation time of the l-th rank harmonics (tau(lR)), converges to a nearly constant value at high density. Surprisingly, this density independent value of D-T tau(lR) is within 5% of the hydrodynamic prediction with the slip boundary condition. This is despite the fact that both D-T and tau(lR) themselves change nearly by an order of magnitude in the density range considered, and the rotational correlation function itself is strongly nonexponential. For small aspect ratios (kappa less than or equal to 1.5), the rotational correlation function remains largely Gaussian even at a very large density, while for a large aspect ratio (kappa greater than or equal to 3), the transition to the nematic liquid-crystalline phase precludes the hydrodynamic regime. Thus, the rotational dynamics of ellipsoids show great sensitivity to the aspect ratio. At low density, tau(lR) goes through a minimum value, indicating the role of interactions in enhancing the rate of orientational relaxation. (C) 1997 American Institute of Physics. [S0021-9606(97)50142-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and dynamical properties of ethane in one-dimensional channels of AlPO4-5 and carbon nanotube have been investigated at dilute concentration with the help of molecular dynamics simulation. Density distributions and orientational structure of ethane have been analyzed. Repulsive interactions seem to play an important role when ethane is located in the narrow part of the AlPO4-5 channel. In AlPO4-5, parallel orientation is predominant over perpendicular orientation except when ethane is located in the broader part of the channel. Unlike in the case of single-file diffusion, our results in carbon nanotube show that at dilute concentrations the mean squared displacement, mu(2)(t) approximate to t(alpha), alpha = 1.8. The autocorrelation function for the z-component of angular velocity of ethane in space-fixed frame of reference shows a pronounced negative correlation. This is attributed to the restriction in the movement of ethane along the x- and y- directions. It is seen that the ratio of reorientational correlation times does not follow the Debye model for confined ethane but it is closer to the predictions of the Debye model for bulk ethane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that under gravity the effective masses for neutrino and antineutrino are different which opens a possible window of neutrino-antineutrino oscillation even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. In early universe, in presence of various lepton number violating processes, this oscillation might lead to neutrino-antineutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes. On the other hand, for Majorana neutrinos, this oscillation is expected to affect the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper develops a family of explicit algorithms for rotational dynamics and presents their comparison with several existing methods. For rotational motion the configuration space is a non-linear manifold, not a Euclidean vector space. As a consequence the rotation vector and its time derivatives correspond to different tangent spaces of rotation manifold at different time instants. This renders the usual integration algorithms for Euclidean space inapplicable for rotation. In the present algorithms this problem is circumvented by relating the equation of motion to a particular tangent space. It has been accomplished with the help of already existing relation between rotation increments which belongs to two different tangent spaces. The suggested method could in principle make any integration algorithm on Euclidean space, applicable to rotation. However, the present paper is restricted only within explicit Runge-Kutta enabled to handle rotation. The algorithms developed here are explicit and hence computationally cheaper than implicit methods. Moreover, they appear to have much higher local accuracy and hence accurate in predicting any constants of motion for reasonably longer time. The numerical results for solutions as well as constants of motion, indicate superior performance by most of our algorithms, when compared to some of the currently known algorithms, namely ALGO-C1, STW, LIEMID[EA], MCG, SUBCYC-M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments have indicated a dramatically different viscosity dependence of the translational and the rotational diffusion coefficients in a supercooled liquid as the glass transition temperature is approached from above. While the translational motion seems to be decoupled from the rising viscosity (eta), the rotational motion seems to remain firmly coupled to eta. In order to understand the microscopic origin of this behavior, we have carried nut detailed theoretical calculations of both the quantities by using a self-consistent mode-coupling theory (MCT). it is found that when the size of the solute is same as that of the solvent molecules, the conventional MCT fails to predict the observed decoupling. The solvent inhomogeneity is found to play a decisive role in determining the decoupling. The difference in the viscosity dependence between rotation and translational diffusion coefficient is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the region spanning residues 95-146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 angstrom. Severe diffraction anisotropy, rotational pseudo-symmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of the Indian Ocean Dipole (IOD) and El Nino and the Southern Oscillation (ENSO) on sea level variations in the North Indian Ocean during 1957-2008. Using tide-gauge and altimeter data, we show that IOD and ENSO leave characteristic signatures in the sea level anomalies (SLAs) in the Bay of Bengal. During a positive IOD event, negative SLAs are observed during April-December, with the SLAs decreasing continuously to a peak during September-November. During El Nino, negative SLAs are observed twice (April-December and November-July), with a relaxation between the two peaks. SLA signatures during negative IOD and La Nina events are much weaker. We use a linear, continuously stratified model of the Indian Ocean to simulate their sea level patterns of IOD and ENSO events. We then separate solutions into parts that correspond to specific processes: coastal alongshore winds, remote forcing from the equator via reflected Rossby waves, and direct forcing by interior winds within the bay. During pure IOD events, the SLAs are forced both from the equator and by direct wind forcing. During ENSO events, they are primarily equatorially forced, with only a minor contribution from direct wind forcing. Using a lead/lag covariance analysis between the Nino-3.4 SST index and Indian Ocean wind stress, we derive a composite wind field for a typical El Nino event: the resulting solution has two negative SLA peaks. The IOD and ENSO signatures are not evident off the west coast of India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model to study the growth of dendrites in a pure metal solidification process with an imposed rotational flow field is presented. The micro-scale features of the solidification are modeled by the well-known enthalpy technique. The effect of flow changing the position of the dendrite is captured by the Volume of Fluid (VOF) method. An imposed rigid-body rotational flow is found to gradually transform the dendrite into a globular microstructure. A parametric study is carried out for various angular velocities and the time for merger of dendrite arms is compared with the order estimate obtained from scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now well known that there is a strong association of the extremes of the Indian summer monsoon rainfall (ISMR) with the El Nio and southern oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO), later being an east-west oscillation in convection anomaly over the equatorial Indian Ocean. So far, the index used for EQUINOO is EQWIN, which is based on the surface zonal wind over the central equatorial Indian Ocean. Since the most important attribute of EQUINOO is the oscillation in convection/precipitation, we believe that the indices based on convection or precipitation would be more appropriate. Continuous and reliable data on outgoing longwave radiation (OLR), and satellite derived precipitation are now available from 1979 onwards. Hence, in this paper, we introduce new indices for EQUINOO, based on the difference in the anomaly of OLR/precipitation between eastern and western parts of the equatorial Indian Ocean. We show that the strong association of extremes of the Indian summer monsoon with ENSO and EQUINOO is also seen when the new indices are used to represent EQUINOO.