39 resultados para role-based access control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we are concerned with finding the maximum throughput that a mobile ad hoc network can support. Even when nodes are stationary, the problem of determining the capacity region has long been known to be NP-hard. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the heuristic is very simple to implement and is not overly sensitive to the threshold value used. We find empirical conditions for our heuristic to be near-optimal as well as network scenarios when our simple heuristic does not perform very well. We provide extensive numerical and simulation results for different parameter settings of our model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Channel-aware assignment of subchannels to users in the downlink of an OFDMA system requires extensive feedback of channel state information (CSI) to the base station. Since bandwidth is scarce, schemes that limit feedback are necessary. We develop a novel, low feedback, distributed splitting-based algorithm called SplitSelect to opportunistically assign each subchannel to its most suitable user. SplitSelect explicitly handles multiple access control aspects associated with CSI feedback, and scales well with the number of users. In it, according to a scheduling criterion, each user locally maintains a scheduling metric for each subchannel. The goal is to select, for each subchannel, the user with the highest scheduling metric. At any time, each user contends for the subchannel for which it has the largest scheduling metric among the unallocated subchannels. A tractable asymptotic analysis of a system with many users is central to SplitSelect's simple design. Extensive simulation results demonstrate the speed with which subchannels and users are paired. The net data throughput, when the time overhead of selection is accounted for, is shown to be substantially better than several schemes proposed in the literature. We also show how fairness and user prioritization can be ensured by suitably defining the scheduling metric.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Channel-aware assignment of sub-channels to users in the downlink of an OFDMA system demands extensive feedback of channel state information (CSI) to the base station. Since the feedback bandwidth is often very scarce, schemes that limit feedback are necessary. We develop a novel, low feedback splitting-based algorithm for assigning each sub-channel to its best user, i.e., the user with the highest gain for that sub-channel among all users. The key idea behind the algorithm is that, at any time, each user contends for the sub-channel on which it has the largest channel gain among the unallocated sub-channels. Unlike other existing schemes, the algorithm explicitly handles multiple access control aspects associated with the feedback of CSI. A tractable asymptotic analysis of a system with a large number of users helps design the algorithm. It yields 50% to 65% throughput gains compared to an asymptotically optimal one-bit feedback scheme, when the number of users is as small as 10 or as large as 1000. The algorithm is fast and distributed, and scales with the number of users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A regenerative or circulating-power method is presented in this paper for heat run test on the legs of a three-level neutral point clamped (NPC) inverter. This test ensures that only losses are drawn from the dc supply, while rated power is circulated between the two legs, thus minimising wastage of energy. A proportional-resonant (PR) controller based current control scheme is proposed here for the circulating power test setup in NPC inverter. Simulation and experimental results are presented to validate the controller design at various operating conditions. Results of thermal test on the inverter legs are presented at two different operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid development of communication and networking has lessened geographical boundaries among actors in social networks. In social networks, actors often want to access databases depending upon their access rights, privacy, context, privileges, etc. Managing and handling knowledge based access of actors is complex and hard for which broad range of technologies need to be called. Access based on dynamic access rights and circumstances of actors impose major tasks on access systems. In this paper, we present an Access Mechanism for Social Networks (AMSN) to render access to actors over databases taking privacy and status of actors into consideration. The designed AMSN model is tested over an Agriculture Social Network (ASN) which utilises distinct access rights and privileges of actors related to the agriculture occupation, and provides access to actors over databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-packet reception (MPR) promises significant throughput gains in wireless local area networks (WLANs) by allowing nodes to transmit even in the presence of ongoing transmissions in the medium. However, the medium access control (MAC) layer must now be redesigned to facilitate rather than discourage - these overlapping transmissions. We investigate asynchronous MPR MAC protocols, which successfully accomplish this by controlling the node behavior based on the number of ongoing transmissions in the channel. The protocols use the backoff timer mechanism of the distributed coordination function, which makes them practically appealing. We first highlight a unique problem of acknowledgment delays, which arises in asynchronous MPR, and investigate a solution that modifies the medium access rules to reduce these delays and increase system throughput in the single receiver scenario. We develop a general renewal-theoretic fixed-point analysis that leads to expressions for the saturation throughput, packet dropping probability, and average head-of-line packet delay. We also model and analyze the practical scenario in which nodes may incorrectly estimate the number of ongoing transmissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor-suppressor protein p53, the `guardian of the genome', is critical in maintaining cellular homeostasis and genomic stability. Earlier, we have reported the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA that regulate the translation of the full length and its N-terminal-truncated isoform, Delta N-p53. Polypyrimidine tract-binding protein (PTB) is an IRES trans-acting factor that positively regulates the IRES activities of both p53 isoforms by relocating from nucleus to the cytoplasm during stress conditions. Here we have demonstrated the putative contact points of PTB on the p53 IRES RNA. Studies on mutations that occur naturally in the 5' untranslated region (5' UTR) in p53 mRNA were lacking. We have investigated a naturally occurring C-to-T single-nucleotide polymorphism (SNP) first reported in human melanoma tumors. This SNP is at position 119 in the 5' UTR of p53 mRNA and we demonstrate that it has consequences on the translational control of p53. Introduction of this SNP has led to decrease in cap-independent translation from p53 5' UTR in bicistronic reporter assay. Further, the effects of this SNP on cap-independent translation have been studied in the context of p53 cDNA as well. Interestingly, the 5' UTR with this SNP has shown reduced binding to PTB that can be corroborated to its weaker IRES activity. Previously, it has been shown that G2-M checkpoint, DNA-damaging stress and oncogenic insult favor IRES-mediated translation. Under similar conditions, we demonstrate that this SNP interferes with the enhancement of the IRES activity of the 5' UTR. Taken together, the results demonstrate for the first time that SNP in the 5' UTR of the p53 mRNA might have a role in translational control of this critical tumor-suppressor gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor suppressor p53 represents a paradigm for gene regulation. Its rapid induction in response to DNA damage conditions has been attributed to both increased half-life of p53 protein and also increased translation of p53 mRNA. Recent advances in our understanding of the post-transcriptional regulation of p53 include the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA. These IRES elements regulate the translation of the full length as well as the N-terminally truncated isoform, p53/47. The p53/47 isoform is generated by alternative initiation at an internal AUG codon present within the p53 ORF. The aim of this review is to summarize the role of translational control mechanisms in regulating p53 functions. We discuss here in detail how diverse cellular stress pathways trigger alterations in the cap-dependent and cap-independent translation of p53 mRNA and how changes in the relative expression levels of p53 isoforms result in more differentiated p53 activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have proposed and implemented a joint Medium Access Control (MAC) -cum- Routing scheme for environment data gathering sensor networks. The design principle uses node 'battery lifetime' maximization to be traded against a network that is capable of tolerating: A known percentage of combined packet losses due to packet collisions, network synchronization mismatch and channel impairments Significant end-to-end delay of an order of few seconds We have achieved this with a loosely synchronized network of sensor nodes that implement Slotted-Aloha MAC state machine together with route information. The scheme has given encouraging results in terms of energy savings compared to other popular implementations. The overall packet loss is about 12%. The battery life time increase compared to B-MAC varies from a minimum of 30% to about 90% depending on the duty cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IEEE 802.1le medium access control (MAC) standard provides distributed service differentiation or Quality-of- Service (QoS) by employing a priority system. In 802.1 le networks, network traffic is classified into different priorities or access categories (ACs). Nodes maintain separate queues for each AC and packets at the head-of-line (HOL) of each queue contend for channel access using AC-specific parameters. Such a mechanism allows the provision of differentiated QoS where high priority, performance sensitive traffic such as voice and video applications will enjoy less delay, greater throughput and smaller loss, compared to low priority traffic (e. g. file transfer). The standard implicitly assumes that nodes are honest and will truthfully classify incoming traffic into its appropriate AC. However, in the absence of any additional mechanism, selfish users can gain enhanced performance by selectively classifying low priority traffic as high priority, potentially destroying the QoS capability of the system.